跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聿靖
研究生(外文):Yu-Ching Wang
論文名稱:使用改良型Crossedtip-backsprings作前傾下顎臼齒扶正之效果
論文名稱(外文):The effects of using modified tip-back springs on uprighting mesially inclined mandibualr molars
指導教授:陳明岐陳明岐引用關係吳秋彬
指導教授(外文):Min-Chi ChenChiou-Bing Wu
學位類別:碩士
校院名稱:長庚大學
系所名稱:顱顏口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:臼齒扶正旋轉中心三角函數改良型副作用齒槽骨下顎牙齒挺出
外文關鍵詞:molar uprightingcenter of rotationextrusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
利用單一spring作tip-back mechanism來扶正前傾的下顎第二大臼齒時,時常發生牙齒挺出的副作用。而由兩個spring組成的crossed tip-back springs,彼此的垂直分力則能互相抵消。本研究的目的是觀察以crossed tip-back springs來扶正臼齒時,其治療效果:包括臼齒旋轉中心的位置、牙齒挺出的量、所需的治療時間、下顎第三大臼齒的存在是否有影響、及扶正前後齒槽骨高度和缺牙區大小的變化。
分析16位病人治療前後的環口及測顱X光片,包括12位女性,8位男性;其中有8位接受單側臼齒扶正,另外8位則為雙側。治療前的平均年齡為28.9歲,平均治療時間為171天。被扶正臼齒的旋轉中心距離牙根尖佔臼齒全長的比例,由三角函數推得為1-(r1/L),r1= W1d2sinθ2-W2d1sinθ1/ W2 sinθ1-W1(L2/L1) sinθ2 。牙齒挺出造成的垂直向量改變,則在測顱片上量測。
結果發現有70%的病人,其臼齒旋轉中心是位於臼齒全長一半以上,而N-Me距離雖略有增加,overbite略有減少,但不致造成開咬,顯示crossed tip-back springs不會造成大量的牙齒挺出。扶正程度並不影響治療時間長短及最後缺牙區的大小。扶正臼齒的後方若有第三大臼齒的存在,對旋轉中心的位置、治療時間、顏面垂直高度、齒槽骨高度、及缺牙區大小的變化沒有影響。除了雙側的臼齒扶正比單側需要較長時間外,其餘像年齡、性別、和扶正程度均不影響扶正運動。
Using tip-back mechanics for molar uprighting frequently happenes undesirable molar extrusion. Crossed tip-back springs emphasize that the vertical force can cancel each other out by activating the two spring equally. The purposes of the present study are to evaluate the treatment effects of two springs by locating the center of resistance (CRot) of molar, monitoring the magnitude of extrusion, estimating the correction time, observing the influence of the third molar existence and the change of the periodontal support and the perimeter of the edentulous space .
Pre- and post-treatment radiographs of 16 treated patients (12 females and 4 males; 8 unilateral and 8 bilateral) were analyzed. The average pretreatment age was 28.9 years and the average treatment time was 171 days. The CRot of molar from apex was computed on panorex by arithmetic formula: 1-(r1/L), r1= W1d2sinθ2-W2d1sinθ1/ W2 sinθ1-W1(L2/L1) sinθ2. And the vertical changes were measured on cephalograms.
The majority (70%) of the uprighted molars had the center of rotation which was more coronal than the midpoint of molars. The change of the N-Me dimension and the overbite showed that molar extrusion occurred during uprighting. The greater degree of uprighting change didn’t correlate to the longer treatment time and larger edentulous space. The presence of the third molar didn’t affect the uprighting movement. There was 80% uprighted molars expressed reduced periodontal support at the mesial side but it was clinically small. For host and local factors, the only significance was a longer correction time was required for the bilateral uprighting than the unilaterals.
Table of Contents
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Center of resistance and center of rotation 3
2.2 Practical techniques for molar uprighting 5
2.2.1 The disadvantage of molar extrusion during the uprighting treatment 5
2.2.2 The advantage of molar extrusion during the uprighting treatment 6
2.2.3 How to intrude the molar during the uprighting treatment 6
2.2.4 The advantage of molar intrusion during the uprighting treatment 7
2.2.5 The disadvantage of molar intrusion during uprighting treatment 8
2.3 Required correction time 8
2.4 Periodontal change after molar uprighting 9
2.4.1 Comparison of NTM (Non-tilted Molar) and TM (Tilted Molar) (Table 3) 9
2.4.2 The improvement of periodontal health after the uprighting treatment (Table 4) 10
2.4.3 The deleterious effects on periodontal health after the uprighting treatment (Table 4) 12
2.5 Paralleling and space problems associated with prosthetic rehabilitation 13
2.6 The influence of the second distal abutment (the third molar) during the uprighting treatment 14
Chapter 3 Purpose and Hypothesis of Research 16
3.1 To locate the center of rotation 17
3.2 To measure the vertical change of the facial height 17
3.3 To correlate the degree of uprighting change with the correction time 18
3.4 To determine the effect of the third molar on the molar uprighting 18
3.5 To measure the change of the periodontal bony level 18
3.6 To correlate the degree of uprighting change and the diameter of edentulous space 19
Chapter 4 Materials and Methods 20
4.1 Subjects 20
4.2 Procedures and techniques 21
4.3 Data collection and validation 22
4.4 Statistical tests 26
Chapter 5 Results 28
5.1 Descriptive statistics 28
5.2 Procedural results and sorted outcomes 29
5.3 Results of statistical analyses 29
Chapter 6 Discussion 31
6.1 The chief results 31
6.2 The interpretation of the results and the context of the literature 31
6.3 Limitations 36
6.4 Summary and future directions 37
Chapter 7 Conclusion 39
References 42
Appendix 1 48
Table 1 Practical techniques for molar uprighting 49
Table 2 Moment to force ratios (M/F) per millimeter of interbracket distance for each of the six basic geometries 50
Table 3 Comparison of NTM (Non-tipped Molar) and TM (Tipped Molar) 51
Table 4 The periodontal change after uprighting treatment 52
Table 5 Patient characteristics 53
Table 6 The measures of central tendency 54
Table 7 The frequency and percentage of the location of the CRot 55
Table 8 The frequency and percentage of the change of the distance from CEJ to alveolar bone 56
Table 9 The mean and standard deviation values for the measurements of the location of center of rotation, the correction time, the changes of vertical dimension (N-Me), the bone level and the width of the edentulous space 57
Table 10 The significance test of comparison between variables 58
Table 11 The influence of the third molar during molar uprighting treatment (2-independent Mann-Whitney U test) 59
Figure 1 Several problems can occur as a result of nonreplacement of missing lower first molars, 60
Figure 2 All simple tip-back uprighting have the side effect of extruding the molar. 61
Figure 3 The crossed tip-back springs and the modified appliances 62
Figure 4 When the line of force does not pass through the CRes, a moment resulting in rotation is produced. 63
Figure 5 Elevation results form correction of molar inclination by pure rotation. 64
Figure 6 Burstone root spring 65
Figure 7 A terminal molar is uprighted and moved mesially to create a contact with the premolar by using T-loop. 66
Figure 8 The third molar is uprighted simultaneously. 67
Figure 9 The intra-oral view(A)(B) and the radiographs (C)(D) of the crossed tip-back springs composed as follows: 68
Figure 10 Two planes and two axes on digitalized panoramic radiographs were drawn by using Photofiltre software: 69
Figure 11 Using the geometric principle of right-angled triangles, the center of rotation was calculated by the two sequential panoramic radiographs 70
Figure 12 Meausrements on cephalomatric radiograph 72
References
1. Norton LA, Lopes I. Specific mechanics for abutment uprighting. Australian Dental Journal 1980;25:273-278.
2. Roberts WW, 3rd, Chacker FM, Burstone CJ. A segmental approach to mandibular molar uprighting. Am J Orthod 1982;81:177-184.
3. Romeo DA, Burstone CJ. Tip-back mechanics. American Journal of Orthodontics 1977;72:414-421.
4. Simon RL. Rationale and practical technique for uprighting mesially inclined molars. Journal of Prosthetic Dentistry 1984;52:256-259.
5. Weiland FJ, Bantleon HP, Droschl H. Molar uprighting with crossed tipback springs. J Clin Orthod 1992;26:335-337.
6. Melsen B, Fiorelli G, Bergamini A. Uprighting of lower molars. Journal of Clinical Orthodontics 1996;30:640-645.
7. Shellhart WC, Oesterle LJ. Uprighting molars without extrusion. Journal of the American Dental Association 1999;130:381-385.
8. Shellhart WC, Oesterle LJ, Cailleteau JG. Effective orthodontics: achieving objectives, avoiding misadventures. Journal of the American Dental Association 1997;128:97-104.
9. Zachrisson BU, Bantleon HP. Optimal mechanics for mandibular molar uprighting. World J Orthod 2005;6:80-87.

10. Mulligan TF. Common Sense Mechanics. CSM, 2122 East Kaler Drive, Phoenix, AZ 85020; 1982.
11. Burstone CJ, Pryputniewicz RJ. Holographic determionation of centers of rotation produced by orthodontic forces. Am J Orthod 1980;77:396-409.
12. Burstone CJ. Modern edgewise mechanics segmentedarch technique University of Connecticut. Farmington; 1975.
13. Marcotte MR. Mechanics for orthodontics. Avon, CT; 1987.
14. Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthodontist 1990;60:135-152.
15. Tuncay OC, Biggerstaff RH, Cutcliffe JC, Berkowitz J. Molar uprighting with T-loop springs. J Am Dent Assoc 1980;100:863-866.
16. Ronay F, Kleinert W, Melsen B, Burstone CJ. Force system developed by V bends in an elastic orthodontic wire.[erratum appears in Am J Orthod Dentofacial Orthop 1990 Jul;98(1):19]. American Journal of Orthodontics & Dentofacial Orthopedics 1989;96:295-301.
17. Burstone CJ, Koenig HA. Force systems from an ideal arch. American Journal of Orthodontics 1974;65:270-289.
18. Shellhart WC, Moawad M, Lake P. Case report: implants as anchorage for molar uprighting and intrusion. Angle Orthod 1996;66:169-172.

19. Zachrisson BU. Clinical implications of recent orthodontic-periodontic research findings. Seminars in Orthodontics 1996;2:4-12.
20. Kessler M. Interrelationships between orthodontics and periodontics. American Journal of Orthodontics 1976;70:154-172.
21. Wehrbein H, Diedrich P. Mesio-marginal findings at tilted molars. A histological-histomorphometric study. European Journal of Orthodontics 2001;23:663-670.
22. Lundgren D, Kurol J, Thorstensson B, Hugoson A. Periodontal conditions around tipped and upright molars in adults. An intra-individual retrospective study. European Journal of Orthodontics 1992;14:449-455.
23. Diedrich PR. Orthodontic procedures improving periodontal prognosis. Dental Clinics of North America 1996;40:875-887.
24. Weinmann J. Bone changes related to eruption of the teeth. Angle Orthod 1941;11:83-99.
25. Brown IS. The effect of orthodontic therapy on certain types of periodontal defects. I. Clinical findings. Journal of Periodontology 1973;44:742-756.
26. Lang N. Das praprotetische Aufrichten von gekippten unteren Molaren im Hinblick auf den parodontalen Zustand. Schweiz Monatsschr Zahnmed 1977;87:560-569.
27. Burch JG, Bagci B, Sabulski D, Landrum C. Periodontal changes in furcations resulting from orthodontic uprighting of mandibular molars. Quintessence International 1992;23:509-513.
28. Bryant RA, McNeill RW, West RA. Orthodontics and orthognathic surgery: adjuncts to restorative and periodontal therapy. Journal of the American Dental Association 1984;108:33-40.
29. Burstone CJ. The mechanics of the segmented arch technique. Angle Orthod 1966;36:99-120.
30. Geramy A. Alveolar bone resorption and the center of resistance modification (3-D analysis by means of the finite element method). American Journal of Orthodontics & Dentofacial Orthopedics 2000;117:399-405.
31. Dahlberg G. Statistical methods for medical and biological student. New York: Interscience 1940.
32. Lucchesi M, Wood R, Nortje C. Suitability of the panoramic radiograph for assessment of mesiodistal angulation of teeth in the buccal segments of the mandible. Am J Orthod Dentofacial Orthop 1988;94:303-310.
33. Mckee I, Glover K, Williamson P, Lam E, Heo G, Major P. The effect of vertical and horizontal heas positioning in panoramic radiography on mesiodistal tooth angulations. Angle Orthod 2001;71:442-451.
34. Mckee I, Williamson P, Lam E, Heo G, Glover K, Major P. The accuracy of 4 panoramic units in the projection of mesiodistal tooth angulations. Am J Orthod Dentofacial Orthop 2002;121:166-175.
35. Ursi W, Almeida R, Tavano O, Henriques J. Assessment of mesiodistal inclination through panoramic radiography. J Clin Orthod 1990;24:166-173.

36. Larheim T, Svanaes D. Reproducibility of rotational panoramic radiography: mandibular linear dimensions and angles. Am J Orthod Dentofacial Orthop 1986;90:45-51.
37. Akcam M, Altiok T, Ozdiler E. Panoramic radiographs: a tool for investigating skeletal pattern. Am J Orthod Dentofacial Orthop 2003;123.
38. Fryholm A, Malmgren O, Samfors K, U W. Angular measurements in rothopantomography. Dentomaxillofac Radiol 1977;90:77-81.
39. Boyd R, Leggott P, Qinn R, Eakle W, Chambers D. Periodontal implications of orthodontic treatment in adults with reduced or normal periodontal tissues versus those of adolescents. Am J Orthod Dentofacial Orthop 1980;96:191-199.
40. Hollender L, Ronnerman A, Thilander B. Root resorption, marginal bone support and clinical crown length in orthodontically treated patients. Eur J Orthod 1980;2:197-205.
41. Tanne K, Nagataki T, Inoue Y, Sakuda M. Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. Am J Orthod Dentofacial Orthop 1991;100:66-71.
42. Cobo J, Sicilia A, Arguelles J, Suarez D, Vijande M. Initial stress induced in periodontal tissue with diverse degrees of bone loss by an orthodontic force: tridimensional analysis by means of the finite element method. Am J Orthod Dentofacial Orthop 1993;104:448-454.
43. Banleon H. Modified lingual lever arm technique: biomechanical considerations. In: Nanda R. Biomechanics in clinical orthodontics. Philadelphia: WB Saunders 1997:241.
44. Siatkowski R. Optimal Orthodontic space closure in adult patients. Dent Clin North Am 1996;40:837-873.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top