跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 12:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭鈞仁
研究生(外文):Chun-Jen,Cheng
論文名稱:臨時贋復材料在不同修復連接方式下的斷裂強度之研究
論文名稱(外文):The Fracture Strength of Various Joint Designs of Provisional Restorative Materials
指導教授:林峻立林峻立引用關係
指導教授(外文):Chun-Li,Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:顱顏口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:147
中文關鍵詞:臨時贋復材料斷裂強度田口氏法聚甲基丙烯酸甲酯雙酚醇基丙烯酸複合樹脂修復直交表
外文關鍵詞:provisional restorative materialsfracture strengthTaguchi methodpolymethyl methacrylate (PMMA)bis-GMAbis-acrylrepairorthogonal array
相關次數:
  • 被引用被引用:1
  • 點閱點閱:890
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
牙冠牙橋治療過程中,樹脂材料的臨時贋復物在臨床上使用常會有斷裂破損情形發生。面對修復後的臨時贋復物再次發生斷裂情形,其斷裂強度被許多因子影響,值得研究確立。回顧文獻,贋復物主體材料種類、修補材料的選擇、修復連接設計與補強和修復關節厚度的限制是為影響修復後臨時贋復材料斷裂強度最主要的控制因子。本研究即以處理多因子之田口氏實驗設計法(Taguchi method)來處理如此龐大因子影響之主體,將上述四個控制因子與每個控制因子的水準(level)套用田口式L9直交表,以九組直交表實驗組合來製備體外斷裂實驗試件;而每組共以五個實驗試件作斷裂測試獲得平均折斷負荷量,利用各組平均折斷負荷量來作田口氏與變異數分析;試件斷面則以15.5倍光學顯微鏡觀察失敗模式。研究結果得到:影響修復後臨時贋復材料斷裂強度最為重要的因子是主體材料(佔33.48%)、修補材料的選擇居次(31.88%)、關節厚度的維持第三(19.70%),最不重要的是關節設計與補強(14.94%)。雙酚醇基丙烯酸複合樹脂材料ProtempTM 3 GarantTM (3MTM ESPETM, Germany)(P3G)是研究選用主體材料中表現最強的。聚甲基丙烯酸甲酯材料Tempron®(GC Corp., Tokyo, Japan )(TP) 因為單體殘留多是為最佳修補材料。建議達到4公釐厚度兼顧強度與適當錐隙深度的修補關節厚度。45度斜面型關節設計比方型接合型與纖維強化型更能發揮最大斷裂強度。因此,修復後關節斷裂強度最佳化組合是:主體材料為P3G以TP來修補,且利用45度斜面型製備斷端,修復關節厚度以4.0公釐為宜。田口氏預測最大斷裂強度值為173.34牛頓。顯微鏡斷面觀察發現:修補材料與主體材料間因材料種類不同而結合能力各異,添加玻璃纖維對修補後樹脂試件的斷裂強度沒有強化作用主要是改變再次斷裂的模式。針對多因子影響的材料力學研究,田口氏法可以運用最少的實驗成本與試件,獲得因子的重要性次序與最佳化參數,並有預測功能,是一種有效率的實驗設計法。本研究旨在獲得可信賴的最佳修復方式,使臨床醫師在面對斷裂後的臨時贋復材有更多科學證據可依循與應用。
Fracture of fixed provisional restorations is often found clinically. However, there are still remaining some problems in repair of fractured provisional restorations. The fracture strength of repaired provisional restorative materials was influenced by various parameters. The purpose of this study was to evaluate the fracture strength of repaired connectors with three different repair designs for both PMMA and Bis-GMA provisional materials. Different repair materials and connector thickness were design factors as well. Multiobjective optimization with statistics-based- Taguchi method was used to investigate the optimal design with the respect to four different design factors, named subject material, repair material, connector thickness and joint design (including butt joint, 45˚bevel, and fiber reinforcement). Each factor was assigned with three levels. Through use of a Taguchi L9 orthogonal array, nine experimental specimen groups with different parameter combinations were fabricated (n=5) and tested with universal test machine (NTS, USA) for fracture strength. Experimental specimens were rectangular bar-shaped resin patterns (64mm x 13mm x 2.5,3 or 4mm) according to ADA/ANSI specification No.13. Fracture load (N) of each specimen group was investigated and recorded. Taguchi method was employed to identify the significance of each design factor in controlling the fracture strength and ANOVA was performed to determine sensitivity of each design parameter. Fractographic analysis was performed by 15.5 x optical microscope (H-R, Germany) for each specimen to identify adhesive or cohesive failure mode. The mean effect of the design factors at each level could be found. The finding indicated that subject material, with a contribution percentage as high as 33.48% had the most dominant effect on fracture strength of provisional restorations, followed by repair material (31.88%), connector thickness (19.70%), and joint design (14.94%). Bis-acryl material ProtempTM 3 GarantTM (3MTM ESPETM, Germany)(P3G) was the most strongest one among three different resin materials. Owing to more monomer reaction, PMMA material Tempron®(GC Corp., Tokyo, Japan )(TP) was the most preferable one among three repair materials. 4-mm-thickness repair connector was recommended for connector strength and plaque control. 45-degree bevel joint design was the strongest joint design than butt joint design or fiber joint design. The test results revealed the optimum parameters combination (P3G/ TP/ 45BV/ 4mm) and the optimum fracture strength (173.34N). From fractographic analysis, fiber ribbon reinforcement groups were almost cohesive mode without complete catastrophic fracture. Different bonding ability between same or different resin materials were observed. Within the limitation of this study, the fracture strength of repaired provisional restorative material was mostly influenced by these four design factors. Taguchi method was shown to be an effective method in optimizing the design factors. Clinician should be aware of material science knowledge for a better result of repaired provisional restorations.
指導教授推薦書 p.i
口試委員審定書 p.ii
國家圖書館授權書 p.iii
長庚大學碩士紙本論文著作授權書 p.iv
誌謝 p.v
中文摘要 p.vi
英文摘要 p.viii
目錄 p.x
圖目錄 p.xiv
表目錄 p.xvii
第一章 緒論 p.1
1.1研究背景 p.1
1.2田口氏法 p.5
1.3 研究動機 p.6
1.4文獻回顧 p.7
1.4.1 臨時贋復材料之種類 p.9
1.4.1.1 主體材料 p.9
1.4.1.2 修補材料 p.13
1.4.2 臨時固定贋復物之修復連接處設計與補強 p.16
1.4.3 臨時固定贋復物修復連接處之關節厚度 p.24
1.4.4 田口氏法的應用 p.25
1.4.5 文獻總結 p.29
1.5研究目的及假說 p.31
第二章 材料與方法 p.33
2.1實驗流程 p.33
2.2田口氏法於本研究之應用 p.35
2.3實驗選用材料與設計 p.36
2.4斷裂實驗 p.39
2.4.1夾置具與衝頭之製作 p.40
2.4.2實驗試件之製備 p.42
2.4.2.1製作標準試件樣本 p.42
2.4.2.2模具製作 p.43
2.4.2.3複製實驗試件 p.44
2.4.3先導測試 p.46
2.4.4製備方形接合型與45度斜面型試件 p.47
2.4.5製備纖維強化型之凹槽試件 p.48
2.4.6纖維強化實驗試件之製備 p.49
2.4.7修補材料:光照性流動性複合樹脂之填補方式 p.50
2.4.8進行斷裂實驗 p.51
2.5顯微鏡斷面觀察 p.52
2.5.1光學顯微鏡觀察與分類 p.52
2.5.2鑑別斷裂形式 p.52
2.6 資料處理與分析 p.54
第三章 結果 p.55
3.1田口氏法分析結果 p.56
3.2顯微鏡斷面觀察結果 p.58
第四章 討論 p.60
4.1 田口氏法結果之分析 p.61
4.2 修復後臨時贋復材料斷裂強度控制因子之分析 p.62
4.2.1臨時贋復物主體材料對斷裂強度之影響 p.62
4.2.2 臨時贋復物修補材料對斷裂強度之影響 p.65
4.2.3 修復關節厚度對斷裂強度之影響 p.68
4.2.4不同關節設計與補強對斷裂強度之影響 p.69
4.2.5 纖維強化之作用 p.70
4.3 實驗設計 p.72
4.4 臨床使用之意義 p.75
第五章 結論 p.76
參考文獻 p.136

圖目錄
圖一、臨時固定局部義齒臨床圖片 p.78
圖二、臨時固定局部義齒所應具備之基本性質 p.79
圖三、臨時固定局部義齒臨床斷裂圖 p.80
圖四、Harrison與Stansbury三種斷端修復型式 p.80
圖五、Beyli 與von Fraunhofer實驗斷端設計型式 p.81
圖六、Ward JE研究修復關節斷端型式 p.82
圖七、完全破壞性斷裂型式 p.83
圖八、不分離型式 p.83
圖九、部份斷裂型式 p.83
圖十、研究流程圖 p.84
圖十一、本研究控制因子與水準及所使用的材料樹枝圖 p.85
圖十二、三點彎折測試(Three-point bending)示意圖 p.86
圖十三、美國標準測試方法學會(ASTM)建議之夾具衝頭設計圖 p.86
圖十四、試件夾置具與衝頭示意圖 p.87
圖十五、夾置具與衝頭分解圖 p.88
圖十六、夾置具底座工程圖 p.89
圖十七、T型螺帽下半部工程圖 p.90
圖十八、T型螺帽上半部工程圖 p.91
圖十九、實驗用衝頭工程圖 p.92
圖二十、實驗用夾置具與衝頭實物分解圖 p.93
圖二十一、夾置具實物分解圖 p.94
圖二十二、實驗用衝頭實物圖 p.95
圖二十三、標準實驗試件樣本模具製作示意圖 p.95
圖二十四、標準實驗試件樣本製備流程圖 p.96
圖二十五、加成式矽化物印模材 p.96
圖二十六、標準實驗試件模具與試件製作流程圖 p.97
圖二十七、自聚性聚甲基丙烯酸甲酯材料Tempron® p.100
圖二十八、ProtempTM 3 GarantTM雙酚醇基丙烯酸複合樹脂材料 p.100
圖二十九、Structur 2 SCTM雙酚醇基丙烯酸複合樹脂材料 p.101
圖三十、水浴機 p.101
圖三十一、先導測試 p.102
圖三十二、實驗試件製備型式示意圖 p.103
圖三十三、修形製備之工具 p.104
圖三十四、方形接合型與45度斜面型試件製備流程圖 p.105
圖三十五、精密平行拋光儀 p.106
圖三十六、纖維強化型關節修補製備流程圖 p.107
圖三十七、Fiber-Splint ® 玻璃纖維強化緞帶 p.110
圖三十八、光照性流動性複合樹脂Exthet X flow ® p.110
圖三十九、高強度鹵素燈 p.111
圖四十、水浴機中之所有製備完成試件 p.111
圖四十一、15.5倍光學顯微鏡設備圖 p.112
圖四十二、實驗試件斷裂形式示意圖 p.113
圖四十三、田口氏法分析之主體材料控制因子反應圖 p.114
圖四十四、田口氏法分析之修復設計控制因子反應圖 p.114
圖四十五、田口氏法分析之修復材料控制因子反應圖 p.115
圖四十六、田口氏法分析之關節厚度控制因子反應圖 p.115
圖四十七、變異係數分析結果 p.116
圖四十八、方形接合型試件斷裂面顯微觀 p.116
圖四十九、45度斜面型試件斷裂面正反面顯微觀 p.117
圖五十、D組方形接合型試件斷裂面顯微觀 p.117
圖五十一、C、F、I組纖維強化組斷裂面顯微觀 p.118
圖五十二、ProtempTM 3 GarantTM [P3G]之化學結構簡圖 p.119

表目錄
表一、樹脂材料的成份添加物之化學組成 p.120
表二、各類臨時固定贋復材料物理性質的比較 p.121
表三、正式固定局部義齒連接體最小尺寸表 p.122
表四、影響修復後臨時固定贋復物材料斷裂強度之因子 p.123
表五、田口氏L9直交表及點線圖 p.124
表六、本研究所使用材料之產品資料 p.125
表七、黏著劑Fiber-Bond®之成份組成 p.125
表八、本研究各材料及參數之代號 p.126
表九、本研究實驗設計控制因子與水準表 p.127
表十、田口氏L9直交表的實驗材料與參數組合 p.128
表十一、本研究臨時贋復物主體材料與修補材料的成分組成 p.129
表十二、三點彎折測試實驗結果一覽表 p.130
表十三、三點彎折測試實驗結果整理表 p.132
表十四、試件斷裂形式定義表 p.133
表十五、個別控制因子與水準之反應表 p.134
表十六、驗證實驗結果整理表 p.134
表十七、田口氏預測值與驗證實驗值比較表 p.135
表十八、本研究使用材料之材料性質 p.135
參考文獻
[1]Rosenstiel SF, Land MF, Fujimoto J, Contemporary Fixed Prosthodontics, 4th ed. St Louis, Missouri: Mosby Co; 2006. p.466-504.
[2]Burns DR, Beck DA, Nelson SK. Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97.
[3]Christensen GJ. Provisional restorations for fixed prosthodontics. J Am Dent Assoc 1996;127:249-51.
[4]Duke ES. Provisional restorative materials: a technology update. Compend Contin Educ Dent 1999;20:497-500.
[5]Young HM, Smith CT, Morton D. Comparative in vitro evaluation of two provisional restorative materials. J Prosthet Dent 2001;85: 129-32.
[6]Diaz-Arnold AM, Dunne JT, Jones AH. Microhardness of provisional fixed prosthodontic materials. J Prosthet Dent 1999 ; 82:
525-8.
[7]Tjan AH, Castelnuovo J, Shiotsu G. Marginal fidelity of crowns fabricated from six proprietary provisional materials. J Prosthet Dent 1997;77:482-5.
[8]Wang RL, Moore BK, Goodacre CJ, Swartz ML, Andres CJ. A comparison of resins for fabricating provisional fixed restorations. Int J Prosthodont 1989;2:173-84.
[9]Moulding MB, Teplitsky PE. Intrapulpal temperature during direct fabrication of provisional restorations. Int J Prosthodont 1990; 3:299-304.
[10]Koumjian JH, Nimmo A. Evaluation of fracture resistance of resins used for provisional restorations. J Prosthet Dent 1990; 64:654-7.
[11]Vahidi F. The provisional restoration. Dent Clin N Am 1987;31: 363-81.
[12]Wood M, Halpern BG, Lamb MF. Visible light-cured composite resins: an alternative for anterior provisional restorations. J Prosthet Dent 1984;51:192-4.
[13]Solow RA. Composite veneered acrylic resin provisional restorations for complete veneer crowns. J Prosthet Dent 1999;82:515-7.
[14]Pfeiffer P, Grube L. In vitro resistance of reinforced interim fixed partial dentures. J Prosthet Dent 2003;89:170-4.
[15]Samadzadeh A, Kugel G, Hurley E, Aboushala A. Fracture strengths of provisional restorations reinforced with plasma-treated woven polyethylene fiber. J Prosthet Dent 1997;78:447-50.
[16]Anusavice KJ : Phillips’ science of dental materials, 10ed Philadelphia: WB Saunders; 1996. p.285-431.
[17]Bohnenkamp DM, Garcia LT. Repair of bis-acryl provisional restorations using flowable composite resin. J Prosthet Dent 2004;92:500-2.
[18]El-Ebrashi MK et al : Experimental stress analysis of dental restorations VII. Structure design and stress analysis of fixed partial dentures. J Prosthet Dent 1970;23:177.
[19]Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Brackett SE. Fundamentals of fixed prosthodontics. Third ed., Chicago: Quintessence ;1997. p.225-56.
[20]Robinson FB, Hovijitra S. Marginal fit of direct temporary crowns. J Prosthet Dent 1982;47:390-2.
[21]Monday JJ, Blais D. Marginal adaptation of provisional acrylic resin crowns. J Prosthet Dent 1985;54:194-7.
[22]Palomo F, Peden J. Periodontal considerations of restorative procedures. J Prosthet Dent 1976;36:387-94.
[23]Grajower R, Shaharbani S, Kaufman E. Temperature rise in pulp chamber during fabrication of temporary self-curing resin crowns. J Prosthet Dent 1979;41:535-40.
[24]Crispin BJ, Watson JF, Caputo AA. The marginal accuracy of treatment restorations: a comparative analysis. J Prosthet Dent 1980;44:283-90.
[25]Ireland MF, Dixon DL, Breeding LC, Ramp MH. In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations. J Prosthet Dent 1998; 80:158-62.
[26]Osman YI, Owen CP. Flexural strength of provisional restorative materials. J Prosthet Dent 1993; 70:94-6.
[27]Gegauff AG, Pryor HG. Fracture toughness of provisional resins for fixed prosthodontics. J Prosthet Dent 1987;58:23-29.
[28]Powell DB, Nicholls JI, Yuodelis RA, Strygler H. A comparison of
Wire and Kevlar-reinforced provisional restorations. Int J Prosthodont 1994;7:81-9.
[29]Amet EM, Phinney TL. Fixed provisional restorations for extended prosthodontic treatment. J Oral Implantol 1995;21:201-6.
[30]Craig RG. Restorative dental materials. 9thed. St Louis, Missouri, USA: Mosby Co; 1993. p.133-40,502-42.
[31]Christensen GJ. Tooth preparation and pulp degeneration. J Am Dent Assoc 1997;128:353-4.
[32]Hazelton LR, Nicholls JI, Brudvik JS, Daly CH. Influence of reinforcement design on the loss of marginal seal of provisional fixed partial dentures. Int J Prosthodont 1995;8:572-9.
[33]Gegauff AG, Wilkerson JJ. Fracture toughness testing of visible light- and chemical-initiated provisional restoration resins. Int J Prosthodont 1995; 8:62-68.
[34]O’brien WJ. Dental materials and their selection. 3rd ed. Carol Stream, Canada: Quintessence Pub; 2002. p.339-90.
[35]Skurow HM, Nevins M. The rationale of the preperiodontal provisional biologic trial restoration. Int J Periodontics Restorative Dent 1988;8:8-29.
[36]Boberick KG, Bachstein TK. Use of a flexible cast for the indirect fabrication of provisional restorations.J Prosthet Dent 1999;82:90-3.
[37]Devlin H. Acrylic monomer—friend or foe. Quintessence Dent Technol 1984; 8:511-2.
[38]Kaiser DA, Cavazos E Jr. Temporization techniques in fixed prosthodontics. Dent Clin N Am 1985;29:403-12.
[39]Powers JM, Sakaguchi RL. Craig’s restorative dental materials. twelfth ed. St. Louis, Missouri, USA: Mosby Elsevier Co; p.149-57, 189-207.
[40]Amin AE. The effect of poly-aramide fiber reinforcement on the transverse strength of a provisional crown and bridge resin. Egypt Dent J 1995;41:1299-304.
[41]Capp NJ. The diagnostic use of provisional restorations. Restorative Dent 1985;1:92-98.
[42]Lui JL, Setcos JC. Phillips RW. Temporary restorations: a review. Oper Dent 1986;11:103-10.
[43]Fox SW, Application for outdated composite. J Prosthet Dent 1989;61:116.
[44]Luthardt RG, Stossel M, Hinz M, Vollandt R. Clinical performance and periodontal outcome of temporary crowns and fixed partial dentures: a randomized clinical trial. J Prosthet Dent 2000;83:32-39.
[45]Liebenberg WH. Reducing marginal flash in the fabrication of direct provisional restorations: a new technique using light-cured resin and transparent silicone. J Can Dent Assoc 1995;61:708-13.
[46]Passon C, Goldfogel M. Direct technique for the fabrication of a visible light-curing resin provisional restoration. Quintessence Int 1990;21:699- 703.
[47]Smith DC. Recent developments and prospects in dental polymers. J Prosthet Dent 1962;12:1066-78.
[48]Covey DA, Tahaney SR, Davenport JM. Mechanical properties of heat treated composite resin restorative materials. J Prosthet Dent 1992;68: 458-61.
[49]Donovan TE, Hurst RG, Campagni WV. Physical properties of acrylic resin polymerized by four different techniques. J Prosthet Dent 1985;54: 522-4.
[50]Galindo D, Soltys JL, Graser GN. Long-term reinforced fixed provisional restorations. J Prosthet Dent 1998;79:698-701.
[51]Binkley CJ, Irvin PT. Reinforced heat-processed acrylic resin provisional restorations. J Prosthet Dent 1987;57:689-93.
[52]Federick DR. The provisional fixed partial denture. J Prosthet Dent 1975; 34:520-6.
[53]Caputi S, Traini T, Paciaffi E, Murmura G. Provisional gold-resin restoration executed through an indirect-direct procedure: a clinical report. J Prosthet Dent 2000;84:125-8.
[54]Larson WR, Dixon DL, Aquilino SA, Clancy JM. The effect of carbon graphite fiber reinforcement on the strength of provisional crown and fixed partial denture resins. J Prosthet Dent 1991; 66:816-20.
[55]Schreiber CK. The clinical application of carbon fibre / polymer denture bases. Br Dent J 1974;137:21-22.
[56]Mullarky RH. Aramid fiber reinforcement of acrylic appliances. J Clin Orthod 1985;19:655-8.
[57]Fleisch L, Cleaton-Jones P, Forbes M, van Wyk J, Fat C. Pulpal response to a bis-acryl-plastic (Protemp) temporary crown and bridge material. J Oral Pathol 1984;13:622-31.
[58]Emtiaz S, Tarnow DP. Processed acrylic resin provisional restoration
with lingual cast metal framework. J Prosthet Dent 1998;79:484-8.
[59]Davidoff SR. Heat processed acrylic resin provisional restorations: an in-office procedure. J Prosthet Dent 1982;48:673-5.
[60]Fox CW, Abrams BL, Doukoudakis A. Provisional restorations for
altered occlusions. J Prosthet Dent 1984;52:567-72.
[61]Zinner ID, Trachtenberg DI, Miller RD. Provisional restorations in fixed partial prosthodontics. Dent Clin N Am 1989;33:355-77.
[62]Hazelton LR, Brudvik JS. A new procedure to reinforce fixed provisional restorations. J Prosthet Dent 1995;74:110-13.
[63]Yuodelis RA, Faucher R. Provisional restorations: an integrated approach to periodontics and restorative dentistry. Dent Clin N Am 1980;24: 285-303.
[64]Prestipino V. Visible light cured resins: a technique for provisional fixed restorations. Quintessence Int 1989;20:241-8.
[65]Schweikert EO. The provisional restoration—an instrument in full-mouth reconstruction. Quintessence Int 1986;17:349-56.
[66]Vallittu PK, Lassila VP, Lappalanin R. Wetting the repair surface with methyl methacrylate affects the transverse strength of repaired heat-polymeried resin. J Prosthet Dent 1994;72:639-43..
[67]Greenberg JR. The metal band-acrylic provisional restoration featuring ultra thin stainless steel bands. Compend Contin Educ Dent 1981;2:7-11.
[68]Higginbottom FL. Quality provisional restorations: a must for successful restorative dentistry. Compend Contin Educ Dent 1995; 16:442-44.
[69]Haselton DR, Diaz-Arnold AM, Vargas MA. Flexural strength of provisional crown and fixed partial denture resins. J Prosthet Dent 2002; 87:225-8.
[70]Harrison WM, Stansbury BE. The effect of joint surface contours on the transverse strength of repaired acrylic resin. J Prosthet Dent 1970; 23:464-74.
[71]Beyli MS, von Fraunhofer JA, Repair of fractured acrylic resin. J Prosthet Dent 1980;44:497-503.
[72]Ward JE, Moon PC, Levine RA, Behrendt CL., Effect of repaired surface design, repair material, and processing method on the transverse strength of repaired acrylic denture resin. J Prosthet Dent 1992; 67:815-20.
[73]Lang R, Rosentritt M., Behr M, Handel G, Fracture resistance of PMMA and resin matrix composite-based interim FPD materials. Int J Prosthodont 2003;16:381-384.
[74]Kelly E. Fatigue fracture in denture base polymers. J Prosthet Dent 1969;21:257-66.
[75]Schreiber CK. Polymethylmethacrylate reinforced with carbon fibres. Br Dent J 1971;130:29-30.
[76]Braden M, Davy KW, Parker S, Ladizesky NH, Ward IM. Denture base poly(methylmethacrylate) reinforced with ultra-thin modulus polyethylene fibers. Br Dent J 1988;164:109-13.
[77]Ladizesky NH, Cheng YY, Chow TW, Ward IM. Acrylic resin reinforced with chopped high performance polyethylene fibers-properties and denture construction. Dent Mater 1993;9:128-35.
[78]Powell DB, Nicholls JI, Yuodelis RA, Strygler H. A comparison of wire and Kevlar-reinforced provisional restorations. Int J Prosthodont 1994;7:81-89.
[79]Rudo DN, Karbhari VM. Physical behaviors of fiber reinforcement as applied to tooth stabilization. Dent Clin N Am. 1999;43(1):16.
[80]Vallittu PK. Comparison of the in vitro fatigue resistance of an acrylic resin removable partial denture reinforced with continuous glass fibers or metal wires. J Prosthodont 1996;5:115.
[81]Vallittu PK. Dimensional accuracy and stability of polymethyl methacrylate reinforced with metal wire or with continuous glass fiber. J Prosthet Dent 1996;75:617-21.
[82]McCrorie JW, Anderson JN, Transverse strength of repairs with self-curing resins. Br Dent J 1960;109:364.
[83]Smith DC. The acrylic denture : mechanical evaluation midline fracture. Br Dental J 1961;110:257-67.
[84]Ramos VJ, Runyan DA, Christensen LC. The effect of plasma-treated polyethylene fiber on the fracture strength of polymethyl methacrylate. J Prosthet Dent 1996; 76:94.
[85]Fisher RA. Statistical Methods for Research Workers. Oliver and Boyd, London, 1925.
[86]Taguchi, G, System of Experimental Design. UNIPUB Kraus International Publication, New York, 1987.
[87]Taguchi, G, Konishi, s, and Wu, Y., Quality Engineering Series, Vol. 1, Taguchi Methods, Research and Development, ASI, 1992.
[88]Taguchi, G, Yokoyama, Y, and Wu, Y., Quality Engineering Series, Vol. 2, Taguchi Methods, On-Line Production, ASI, 1994.
[89]Taguchi, G, Yokoyama, Y, and Wu, Y., Quality Engineering Series, Vol. 4, Taguchi Methods, Design of Experiments, ASI, 1993.
[90]Dar FH, Meakin JR, Aspden RM. Statistical methods in finite element analysis. J Biomech, 2002;35:1155-61.
[91]Phillips RW. Skinner’s science of dental materials, 9th ed. Philadephia, USA: W.B. Saunders company; 1991. p.157-213, 235.
[92]Albers HF, editor. Custom temporary materials. In: Adept report. Santa Rosa (CA): Adept Institute, 1997, p.29-40.
[93]Krug RS. Temporary resin crowns and bridges. Dent Clin N Am 1975; 19: 313-20.
[94]Manley TR, Bowman AJ, Cook M. Denture bases reinforced with carbon fibers. Br Dent J 1979;146:25.
[95]Nagai E,Otani K, Satoh Yoshinori, Suzuki S. Repair of denture base resin using woven metal and glass fiber: Effect of methylene chloride pretreatment. J Prosthet Dent 2001;85:496-500.
[96]Freilich MA, Meiers JC. Fiber-reinforced composite prostheses. Dent Clin N Am. 2004; 48:531-44.
[97]Uzun G, Hersek N, Tincer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 1999;81:616-20.
[98]Zarb GA, Bolender CL, Hickey JC, Carlsson GE. Boucher’s prosthodontic treatment for edentulous patients. 10th ed. St. Louis (MO): Mosby- Year Book; 1990, p. 588-9.
[99]Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin N Am. 2004; 48:531-44.
[100]Craig RG, Restorative dentistal materials, 9th ed. USA, Mosby Co.;1993. p.530-42.
[101]Fowlkes WY, Creveling CM. Engineering methods for robust product design using Taguchi methods in technology and product development. Reading, MA: Addison-Wesley, 1995, p.403.
[102]ProtempTM 3 GarantTM temporization material technical product profile, 3MTM ESPETM, Germany.
[103]Welker D, Rzanny A, Göbel R, Interimsversorgungen bei Kronen- und Brückenersatz – Indikationen,Werkstoffe, biologische Aspekte, Methodik, Quintessenz Zahntech 1999;25(10):1133-44.
[104]Structur 2 SCTM cold-curing paste-paste system for the production of temporary crowns and bridges : technical data. Voco, Germany.
[105]Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc. 1998;129:567-77.
[106]Lee CC, Zhang M. Design of monolimb using finite element modelling and statistics-based Taguchi method. Clinical Biomechanics. 2005; 20:759-66.
[107]Hsu CC, Chao CK, WangJL, Lin J. Multiobjective Optimization of Tibial Locking Screw Design Using a Genetic Algorithm: Evaluation of Mechanical Performance Periodicals. J Orthop Res 2006;24:908–16.
[108]Wei YH, Lai CC, Chang JS. Using Taguchi experimental design methods to optimize traceelement composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry. 2007;42: 40–45.
[109]Sahin Y. Optimization of testing parameters on the wear behaviour of metal matrix composites based on the Taguchi method. Materials Science and Engineering A. 2005;408 : 1–8.
[110]Jeney C, Dobay O, Lengyel Aa, Adam E, Nasz I. Taguchi optimisation of ELISA procedures. Journal of Immunological Methods. 1999;223:137–46.
[111]李輝煌。田口方法:品質設計的原理與實務,Taguchi methods : principles and practices of quality deign。高立圖書有限公司。民91。
[112]Perdogão J, Gomes G. Effect of instrument lubricant on the cohesive strength of a hybrid resin composite. Quintessence Int. 2006; 37: 621-25.
[113]O’Brein WJ. Evolution of dental casting. In Valege TM Sr, ed: Alternatives to Gold Alloys in Dentistry. Washington, DC, U.S. Government Printing Office, 1977.
[114]Gratton DG, Aquilino SA. Interim restorations. Dent Clin N Am. 2004;48: 487-97.
[115]鍾國雄。牙科材料學。合記圖書出版社。台北。民93。
[116]黃俞群、王震乾。長徑距纖維強化壓克力樹脂暫用固定局部義齒之折斷負荷[碩士論文]。高雄:高雄醫學大學牙醫學研究所; 2005。
[117]中華口腔醫學辭彙(Chinese Dental Dictionary),4th ed.,中華牙醫學會出版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top