跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許月閔
研究生(外文):Hsu Yueh-Min
論文名稱:圍箍設計對根管治療後之上顎正中門齒抗斷裂強度及應力分佈之影響
論文名稱(外文):Fracture resistance and stress distribution of endodontically treated maxillary central incisors with different ferrule design
指導教授:林峻立林峻立引用關係
指導教授(外文):Lin Chun-Li
學位類別:碩士
校院名稱:長庚大學
系所名稱:顱顏口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:107
中文關鍵詞:圍箍設計根管治療後牙齒根柱與冠心圍箍厚度
外文關鍵詞:ferrule designferrule thicknessendodontically treated toothpost and coredesign
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
經過根管治療後的牙齒,通常因剩餘的齒質較為脆弱,建議必須以根柱及冠心來恢復因蛀牙或外傷而喪失的部份齒質,並以固定假牙修復。但臨床觀察中仍有部分修復後牙齒發生牙齒斷裂而導致最後需要拔除,發生牙齒斷裂可能的相關因素很多,但其中一個重要的因素是:圍箍設計。剩餘牙齒齒質的多寡會影響圍箍高度(ferrule height) 及圍箍厚度(ferrule thickness) ,本研究之研究目的為探討圍箍設計中,不同圍箍高度情況下圍箍厚度之變化是否會影響牙齒整體的抗斷裂強度及應力分佈。因此分別進行體外實驗及有限元素分析法,來分析圍箍高度(ferrule height) 及圍箍厚度(ferrule thickness)對牙齒整體的斷裂強度及應力分佈之影響,並探討兩因子之間是否具有交互影響的作用。在有限元素分析法的部份,使用教學用的標準正中門齒模型,進行雷射掃瞄取得牙齒的外型,再依標準比例縮放得到內部之牙本質、牙髓腔、牙周膜等構造,依不同的參數條件建構不同組合之根柱/冠心/假牙實體模型,輸入邊界條件及材料特性後,施予負載,觀察牙齒整體的應力分佈情形;而在體外實驗的部份,蒐集拔除之人類上顎正中門齒,在口外經過一致的標準根管治療步驟,依不同的參數條件置備牙齒,並製造根柱、冠心及固定假牙後,進行拉伸試驗,以觀察不同參數條件組合下,牙齒的抗斷裂強度及牙齒斷裂模式。最後可將兩個實驗結果,做分析及比對以獲得最終的結論。結果顯示在有限元素模型中,對牙本質而言最大應力集中在舌側齒頸部,而圍箍高度在1~2mm之間的變化並沒有明顯之影響,圍箍之厚度則是一個相當重要的影響因子,隨著圍箍厚度增加牙本質之應力也增加,厚度減少牙本質應力也減少,推測其原因為圍箍厚度變薄時根柱半徑增加,部分應力由鎳鉻根柱吸收因此牙本質所量測之應力下降,對黏合層而言,最大應力集中在舌側黏合層之中段;在體外實驗中發現,圍箍高度在1~2mm之間的變化對牙齒抗斷裂強度並沒有明顯之影響(p=0.542),圍箍厚度則有統計學上顯著意義之影響,具有1.5mm厚度之牙齒較1mm及0.5m之牙齒具有較高之斷裂強度(p<0.001) 。本研究所得之結論: 應盡可能保留愈多的齒質對牙齒愈有利,圍箍厚度是影響根管治療後之上顎正中門齒應力分佈及斷裂強度的一個重要因子,其影響大過於圍箍高度之影響。
Tooth fracture is a major complication of endodontically treated teeth restored with post and core, one of the most important factors is the ferrule design. Ferrule height was well-studied, but ferrule thickness was never mentioned in the previous literatures. The present study evaluated the impact of different ferrule height and ferrule thickness on the stress distribution and fracture resistance of crowned, endodontically treated teeth by finite element method and in vitro experimental method. Stress concentrated at lingual cervical dentin was noted in the finite element model and the intensity was increased with increasing ferrule thickness and decreasing ferrule height. Stress concentrated at middle part of lingual aspect of cement was also noted. 45 intact maxillary central incisors was endodontically treated by standard endodontic procedures and randomized distributed into 9 groups. 1mm、1.5mm and 2mm of ferrule height and 0.5mm、1mm and 1.5mm of ferrule thickness were prepared, and the maximal fracture strength and fracture mode were recorded. The results showed that there is no significant difference of fracture strength with varying ferrule height ranged from 1mm to 2mm. But there is significant difference of fracture strength with varying ferrule thickness. The 1.5-mm ferrule thickness group showed significantly higher fracture resistance (p<0.001) when compared to 1mm and 0.5mm;But no significant difference between 0.5mm and 1mm (p=0.055).Among the 27 teeth, 13 teeth fractured from cervical region and the other 14 teeth were root fractures. More cervical fracture was observed while ferrule is thin and more root fracture while ferrule is getting thick. With the limitation of this study, it was concluded that to preserve as much as coronal tooth structure was beneficial to the fracture resistance of the tooth, and ferrule thickness plays more important roles than ferrule height.
第一章 前言與研究背景-----------------------------------12
第二章 文獻回顧-----------------------------------------16
2.1.影響牙齒斷裂的因素----------------------------------16
2.2.圍箍設計--------------------------------------------19
2.3.電腦模擬應用在根柱之應力分析------------------------23
2.3.1 有限元素分析法探討根柱型態與材質-----------------24
2.3.2 有限元素分析法探討圍箍設計-----------------------27
2.4.文獻回顧總結及建議----------------------------------28
2.5.研究動機--------------------------------------------29
2.6.研究目的--------------------------------------------30
第三章 材料與方法---------------------------------------31
3.1.研究流程圖------------------------------------------32
3.2.電腦模擬分析----------------------------------------33
3.2.1 前置資料處理-------------------------------------33
3.2.2 電腦輔助設計程序---------------------------------34
3.2.3 網格模型生成-------------------------------------36
3.2.4 有限元素模型之驗證實驗---------------------------37
3.2.5 電腦輔助工程分析---------------------------------39
3.3.體外實驗--------------------------------------------40
3.3.1 包埋模具及衝頭之設計與製作-----------------------40
3.3.2 人體上顎正中門齒之蒐集---------------------------41
3.3.3 標準之根管治療步驟-------------------------------41
3.3.4 牙齒包埋-----------------------------------------42
3.3.5 根柱冠心及固定假牙之製作-------------------------43
3.3.6 拉伸試驗-----------------------------------------45
3.3.7 統計與分析---------------------------------------45
第四章 結果---------------------------------------------46
4.1.有限元素模型驗證------------------------------------46
4.2.電腦模擬分析之結果----------------------------------47
4.2.1 整體牙齒應力集中處-------------------------------47
4.2.2 牙本質與黏合層之應力在各參數條件下之最大值-------48
4.2.3 各參數因子之主效應-------------------------------49 4.3.體外實驗結果-----------------------------------------50
4.3.1 斷裂強度之觀察-----------------------------------50
4.3.2 斷裂模式之觀察-----------------------------------52
第五章 討論---------------------------------------------54
5.1.實驗結果之綜合討論----------------------------------54
5.2.本研究之限制----------------------------------------58
5.3.未來研究方向----------------------------------------60
5.4.臨床之應用與建議------------------------------------61
第六章 結論---------------------------------------------63
參考文獻------------------------------------------------64
附表----------------------------------------------------70
附圖----------------------------------------------------76
1. Carter JM, Sorensen SE, Johnson RR, Tietelbaum RL, Levene MS. Punch shear testing of extracted vital and endodontically treated teeth. J Biomech. 1983; 16:841-8.
2. Christensen GJ. When to use fillers, build-ups or posts and cores. J Am
Dent Assoc 1996; 127:1397-8.
3. Zhi-Yue L, Yu-Xing Z. Effect of post-core design and ferrule of
fracture resistance of endodontically treated maxillary central incisors.
J Prosthet Dent 2003; 89:368-73.
4. Fraga RC, Chaves BT, mello GS, Siquera JF Jr. Fracture resistance of
endodontically treated roots after restoration. J Oral Rehabil. 1998; 25:809-13.
5. Kishen A, kumar GV, Chen NN. Stress –strain response in human dentine: rethinking fracture predilection in post-core restored teeth. Dent Traumatol. 2004; 20:90-100.
6. Sirimai S, Riis DN, Morgano SM. An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and-core systems. J Prosthet Dent. 1999; 81: 262-9.
7. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY: Clinical
complications in fixed prosthodontics. J Prosthet Dent. 2003; 90:31-41.
8. Fernandes AS, Dessai GS: Factors affecting the fracture resistance of post-core reconstructed teeth: a review. Int J Prosthodont. 2001; 14: 355-63.
9. Rosential SF, Land MF, Fujimoto J. Contemporary Fixed Prosthodontics. 2nd. 257.
10. Sorensen JA, Engleman MJ. Ferrule design and fracture resistance of endodontically treated teeth. J Prosthet Dent 1990; 63:529-36.
11. Nichollos JI, Libman WJ. Load fatigue of teeth restored with cast posts and cores and complete crowns. Int J Prosthodont 1995; 8: 155 -61.
12. Morgano SM, Brackett SE. Fundation restorations in fixed prosthodontics: current knowledge and future needs. J Prosthet Dent. 1999; 82:643-57.
13. Lloyd PM, Palik JF. The philosophies of dowel diameter preparation: a literature review. J Prosthet Dent. 1993; 69: 32-6.
14. Stern N, Hirshfeld Z. Principles of preparing endodontically treated teeth for dowel and core restorations. J Prosthet Dent. 1973; 30: 162 -165.
15. Robbins JW. Guidelines for the restoration of endodontically treated teeth. J Am dent Assoc. 1990; 120:558,560,562 passim.
16.林威克.碩士論文.高雄醫學大學牙醫學研究所.九十四學年度
17. Sorensen JA, Martinoff JT. Intracoronal reinforcement and coronal coverage: a study of endodontically treated teeth. J Prosthet Dent. 1984; 51:780-84.
18. Ho MH, Lee SY, Chen HH, Lee MC. Three-dimension finite element analysis of the effects of posts on stress distribution in dentin.
J Prosthet Dent. 1994; 72: 367-72.
19. Albuquerque Rde C, Polleto LT, Fontana RH, Cimini CA. Stress analysis of an upper central incisor restored with different posts. J Oral rehabil. 2003; 30:936-43.
20. Pierrisnard L, Bohin F, Renault P, Barquins M. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis. J Prosthet Dent.2002; 88:442-448.
21. Davy DT, Dilley GL, Krejci RF. Determination of stress patterns in root-filled teeth incorporating various dowel designs. J Dent Res. 1981; 60:1301-10.
22. Newman MP, Yaman P, Dennison J, Rafer M, Billy E. Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthet Dent. 2003; 89:360-7.
23. Dilmener FT, Sipahi C, Dalkiz M. Resistance of three new esthetic post-and –core systems to compressive loading. J Prosthet Dent. 2006; 95: 130-6.
24. Asmussen E, Peutzfeldt A, Sahafi A. Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J Prosthet Dent. 2005; 94: 321-9.
25. Dilmener FT, Sipahi C, Dalkiz M. Resistance of three new esthetic post-and-core systems to compressive loading. J Prosthet Dent. 2006; 95:130-6.
26. Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisors. Dent Mater. 2005; 21:709-15.
27. Boschianpest L, Guidotti S, Pietrabissa R, Gagliani M. Stress distribution in a post-restored tooth using the three-dimensional finite element methods. J Oral Rehabil. 2006; 33: 690-7.
28. Martinez-Insua A, da Silva L, Rilo B, Santana U. Comparison of the fracture resistance of pulpless teeth restored with a cast post and core or carbon-fiber posts with a composite core. J Prosthet Dent. 1998; 80:527-32.
29. Goto Y, Nicholls JI, Philps Km, Junge T. Fatigue resistance of endodotnitcally treated teeth restored with three dowel-and-core systems. J Prosthet Dent. 2005; 93:45-50.
30. The Golssary of prosthodontic term. 8th ed. J Prosthet Dent. 2005; 94: 38.
31. Akkayan B. An in vitro study evaluating the effect of ferrule length on fracture resistance of endodontically treated teeth restored with fiber-reinforced and zirconia dowel systems. J Prosthet Dent. 2004; 92:155-62.
32. Pereira JR, Ornelas FE, Conti PCR, Valle ALD. Effect of a crown ferrule on the fracture resistance of endodontically treated teeth restored with prefabricated posts. J Prosthet Dent. 2006;95:50-4.
33. Ng CC, Dumbrigue HB, AI-Bayat MI, Griggs JA, Wakefield CW. Influence of remaining coronal tooth structure location on the fracture resistance of restored endodontically treated anterior teeth. J Prosthet Dent. 2006; 95:290-6.
34. Tan P.LB, Aquilino SA, Gratton DG, Stanford CM, Tan Sc, Johnson WT, Dawson D. In vitro fracture resistance of endodontically treated central inciors with varying ferrule height s and configurations.
J Prosthet Dent. 2005; 83:331-6.
35. Yang HS, Lang LA, Molina A. Felton D. The effects of dowel design and load direction on dowel-and –core restorations. J Prosthet Dent. 2001; 85: 558-67.
36. Ichim I, Kuzmanovic DV, Love RM. A finite element analysis of ferrule design on restoratioon. Int Endodontic J .2006; 39:443-52.
37. Eshleman JR, Janus CE, Jones CR. Tooth preparation designs for resin-bonded fixed partial dentures related to enamel thickness. J Prosthet Dent. 1998; 60:18-22.
38. Farah, JW, Craig, RG, and Meroueh KA: Finite element analysis of three- and four-unit bridges. J. Oral Rehabil. 16:603-611, 1989.
39. Rees JS, Jacobsen PH: Elastic modulus of the periodontal ligament, Biomaterials 18:995-999, 1997.
40. Toparli M et al. Stress analysis in a post restored tooth utilizing the finite element method. J Dent Res.30:470-6.2003.
40. Ko CC, Chu CS, Chung KH, Lee MC. Effects of posts on dentin stress distribution in pulpless teeth. J Prosthet Dent. 1992; 68: 421-7.
41. Ko CC. Stress analysis of pulpless tooth: effects of casting posts on dentin stress distribution. Master’s thesis. Taipei, Taiwan, Yang-Min Medical Collage, 1989.
42. Millers BH, Nakajima H, Powers JM, Nunn ME. Bond strength between cements and metals used for endodontica posts. Dent Mater. 1998; 14:312-20.
43. Nicholls JI. The dental ferrule and the endodontically compromised tooth. Quintessence Int. 2001; 32:171-173.
44. Ricketts DNJ, Tait CME, Higgins AJ. Posts and core systems, reinforcements to tooth preparation and cementation. British Dental Journal. 2005; 198: 533-41.
45. Lu ZY, Zhang YX. Effect of post-core design and ferrule on the fracture resistance of endodontically treated maxillary central incisors. J Prosthet Dent. 2003; 89:368-73.
46. Ng CC, Al-Bayat MI, Dumbrigue HB, Griggs JA, Wakefield CW. Effect of no ferrule on failure of teeth restored with bonded posts and cores. Gen Dent. 2004; 52:143-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文