(3.236.6.6) 您好!臺灣時間:2021/04/23 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳譽元
研究生(外文):Yu-Yuan Chen
論文名稱:一氧化碳在Cu/TiO2觸媒上活性位置的研究
論文名稱(外文):Active sites of Cu/TiO2 catalysts for CO oxidation
指導教授:尤建華陳敬勳
指導教授(外文):Jiann-Hwa YouChing-Shiun Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:83
中文關鍵詞:一氧化碳Cu/TiO2觸媒
外文關鍵詞:CO oxidationCu/TiO2 catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的主要為探討一氧化碳在Cu/TiO2系列觸媒上活性位置之研究。使用Cu/TiO2觸媒在一氧化碳氧化反應上具有好的催化活性,且發現Cu/TiO2觸媒的活性不隨著觸媒上銅表面積與銅含量的多寡作變化,當銅含量在3.7和10.3 wt%之間時,Cu/TiO2觸媒的活性相接近。使用H2-TPR與CO-TPR對Cu/TiO2觸媒做鑑定,發現觸媒上存在不同的CuO物種分別為:單獨的銅原子與高分散度的CuO物種(α還原峰)、聚集的CuO物種(β與γ還原峰)。顆粒較小且具有高分散度的CuO經由鍛燒後形成,再經由氫氣處理後將其轉變成金屬銅原子。在α態Cu2+的濃度被證實與銅含量無關,且當改變鍛燒溫度至500℃時,在Cu2+的濃度不會受到影響。在α態的Cu2+被認為是在TiO2晶格中較小顆粒的銅原子,是影響CO氧化反應的主要活性位置。
We have shown that Cu/TiO2 catalysts possess high levels of catalytic activity for CO oxidation. The activity of Cu/TiO2 catalysts was not enhanced by increased Cu surface area or by Cu content, and was almost constant between 3.7 wt% and 10.3 wt% Cu. The characterization of Cu/TiO2 catalysts by H2-TPR and CO-TPR suggested the presence of different CuO species: isolated Cu atoms and/or highly dispersed CuO (the α state); and bulk CuO (the β and γ states). The small and highly dispersed CuO particles can be formed after calcination, and converted in metallic Cu small particles through reduction treatment. It is shown that the concentration of Cu2+ in the α state is independent of Cu loading, and it cannot be influenced by calcination at 773 K. Cu2+ in the α state is proposed to be located in the TiO2 lattice, and the smaller lattice space may restrict the particle size of Cu, resulting in the formation of smaller particles by aggregation of Cu atoms, even if the catalyst has been treated at 773 K. The α state is proposed to be associated closely with the activity of Cu/TiO2 catalysts.
誌謝 iv
中文摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xiv
第一章 序論 1
第二章 文獻回顧 4
2-1 一氧化碳氧化反應的研究 4
2-2 金屬與擔體作用力 9
第三章 實驗方法與步驟 12
3-1 實驗藥品與氣體 12
3-1-1 氣體 12
3-1-2 藥品 13
3-2 觸媒的製備 14
3-3 活性測試系統 15
3-3-1 儀器 15
3-3-2 反應系統 15
3-3-3 反應條件 16
3-4 觸媒特性鑑定 18
3-4-1 感應耦合電漿原子發射光譜分析儀(ICP/AES) 18
3-4-2 BET表面測定法(BET) 19
3-4-3 X-ray繞射分析儀(X-ray diffraction) 21
3-4-4 氫氣-程溫還原(H2-TPR) 23
3-4-5 CO程溫還原(CO-TPR) 26
3-4-6 X射線光電子能譜儀(ESCA) 28
3-4-7 紅外光吸收光譜(FT-IR) 30
第四章 結果與討論 31
4-1 Cu/TiO2觸媒之鑑定 31
4-1-1 ICP/AES元素組成分析 31
4-1-2 BET表面積測定分析 32
4-1-3 XRD分析 34
4-2 Cu/TiO2觸媒性質分析 39
4-2-1 氫氣-程溫還原(H2-TPR) 39
4-2-2 一氧化碳-程溫還原(CO-TPR) 51
4-2-3 觸媒之X光電子能譜圖(XPS) 53
4-3 CO氧化活性反應 57
4-4 FT-IR 69
第五章 結論 78
5-1 結論 78
5-2 建議 79
參考文獻 80
1.S. Matsuda, A. Kato, “Titanium oxide based catalysts-a review”,App. Catal. 8 (1983) 149
2.D. E. Resasco, G. L. Haller, “A model of metal-oxide support interaction for Rh on TiO2”, J. Catal. 82 (1983) 279
3.M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal. 115 (1989) 301
4.M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon,“Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4” , J. Catal. 144 (1993) 175
5.M. Haruta, “Size- and support-dependency in the catalysis of gold”, Catal. Today 36 (1997) 153
6.Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications”, Appl. Catal. B: Environ. 37 (2002) 17
7.J. T. Kummer, “Catalysts for automobile emission control” , Prog. Energy Combust. Sci. 6 (1980) 177
8.G. G. Jernigan, G. A. Somorjai, “Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide - A Surface Science and Kinetic Study” , J. Catal. 147 (1994) 567
9.T. Inui, Y. Ono, Y. Takagi, J. B. Kim, “Oxygen spillover effects induced by Rh-modification on the low-temperature oxidation of CO over Cu-incorporated zeolite A studied by the forced oscillating reaction method” , Appl. Catal. A: Gen. 202 (2000) 215
10.W. Liu, M. F. Stephanopoulos, ” Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : I. Catalyst Composition and Activity” , J. Catal. 153 (1995) 304
11.W. Liu, M. F. Stephanopoulos, “Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : II. Catalyst Characterization and Reaction-Kinetics” , J. Catal. 153 (1995) 317
12.M. F. Luo, Y. J. Zhong, X. X. Yuan, X. M. Zheng, “TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation” , Appl. Catal. A: Gen. 162 (1997) 121
13.X. Jiang, G. Lu, R. Zhou, J. Mao, Y. Chen, X. Zheng, “Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts” , Appl. Surf. Sci. 173 (2001) 208
14.X. C. Zheng, S. H. Wu, S. P. Wang, S. R. Wang, S. M. Zhang, W. P. Huang, “The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon monoxide oxidation” , Appl. Catal. A: Gen. 283 (2005) 217
15.M. F. Luo, J. M. Ma, J. Q. Lu, Y. P. Song, Y. J. Wang, “High-surface area CuO–CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation” , J. Catal. 246 (2007) 52
16.J. Huang, S. Wang, Y. Zhao, X. Wang, S. Wang, S. Wu, S. Zhang, W. Huang, “Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation” , Catal. Commun. 7 (2006) 1029
17.S. J. Tauster, S. C. Fung, R. L. Garten, “Strong metal-support interactions. Group 8 noble metals supported on TiO2” , J. Am. Chem. Soc. 100 (1978) 170
18.J. A. Horsley, “A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide” , J. Am. Chem. Soc. 101 (1979) 2870
19.S. A. Stevenson, J. A. Dumesic, Van Nostrand-Reinhold, New York (1980)
20.D. I. Gisele, L. Christiane, M. M. Ana, “Study by electron microscopy and electron diffraction of formation of nickel epitaxially grown catalysts” , J. Solid State Chem. 16 (1976) 129
21.D. N. Belton, Y. M. Sun, J. M. White, “Thin-film models of strong metal-support interaction catalysts. Platinum on oxidized titanium” , J. Phys. Chem. 88 (1984) 1690
22.J. Simoens, R. T. K. Baker, D. J. Dwyer, C. R. F. Lund, R. J. Madon, “A study of the nickel-titanium oxide interaction” , J. Catal. 86 (1984) 359
23.F. S. Delk Ⅱ, A. Vavere, “Anomalous metal-support interactions in Cu/TiO2 catalysts” , J. Catal. 85 (1984) 380
24.R. Burch, A. R. Flambard, “Strong metal-support interactions in nickel/titania catalysts: The importance of interfacial phenomena” , J. Catal. 78 (1982) 389
25.M. A. Vannice, C. Sudhaker, “A model for the metal-support effect enhancing CO hydrogenation rates over Pt-TiO2 catalysts” , J. Phys. Chem. 88 (1984) 2429
26.F. Coloma, F. Marquez, C. H. Rochester, J. A. Anderson, “Determination of the nature and reactivity of copper sites in Cu-TiO2 catalysts”, Phys. Chem. Chem. Phys. 2 (2000) 5320
27.F. Coloma, B. B. Baeza, C. H. Rochester, “Infrared study of competitive crotonaldehyde and CO adsorption on Cu/TiO2”, J. A. Anderson, Phys. Chem. Chem. Phys. 3 (2001) 4817
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔