(34.204.201.220) 您好!臺灣時間:2021/04/19 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳俊德
研究生(外文):Chun-De Wu
論文名稱:應用塗佈二氧化鈦之活性碳流體化顆粒進行甲苯光催化降解反應之研究
論文名稱(外文):Degradation of toluene in a fluidized-bed photo-reactor using TiO2 coated active carbons
指導教授:郭修伯
指導教授(外文):Hsiu-Po Kuo
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:流體化床二氧化鈦活性碳
外文關鍵詞:fluidized bedtolueneactive carbon
相關次數:
  • 被引用被引用:3
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文使用表面塗佈二氧化鈦的活性碳顆粒作為流體化粒子,研究揮發性有機化合物甲苯在流體化床反應器進行光催化降解反應。
藉由改變氣體分散器、UV光之使用率進料氣體濃度、相對濕度、進氣流量、二氧化鈦光觸媒披覆量及披覆方式等因素,研究甲苯之降解效率。
實驗結果顯示的最佳AC/TiO2為在pH=1.8~2下,活性碳20g和二氧化鈦3g(13wt%)所進行之表面塗佈粒子。當二氧化鈦的添加量超過3g,過多的二氧化鈦會於活性碳顆粒表面堆疊,而使得紫外光無法穿透,而降低甲苯去除率。當相對濕度為30%,除可以使活性碳吸附去除甲苯,也可以因產生氫氧自由基而提升甲苯的去除率。較低的反應氣體流量可以使反應氣體在流體化床反應器滯留時間較長,而得到較佳的甲苯去除率。
由實驗結果推論以甲苯吸附為速率決定步驟之反應動力式,建立反應速率常數kapp、吸附速率常數ka、表面反應速率常數kS及質傳係數k之關係,推論在較高的進料氣體流量有助於甲苯之吸附。
The performance of TiO2 coated active carbon, AC/TiO2, for the degradation of toluene in a gas fluidized bed photo-reactor was studied. The experimental condition controlled the inlet concentration 250~1000ppm of toluene in the gas phase, the relative humidity 15~65% of the inlet stream and the gas flow rate 5、10 and 15 L/min on the conversion of toluene in a fluidized bed photo-reactor were examined. Experimental results show that the AC/TiO2 overall toluene degrading efficiency, Ed, in the fluidized bed photo-reactor was better than Ed of using only active carbons in the fluidized bed photo-reactor was. When using only active carbons in the system, Ed remained as high as 90% for 80 minutes; while using the AC/TiO2 in the system, Ed remained the value of 90% for nearly 110 minutes. The performance of TiO2 coated active carbon, AC/TiO2 with range 5 wt% ~ 20 wt%. The optimum loading of TiO2 on the active carbons was found to be 13 wt%, and the highest Ed value was hand at relative humidity 30%. The toluene degradation kinetics was studied. The toluene adsorption step was assumed as the rate-determined-step. The apparent reaction rate constant kapp was derived as functions of the toluene adsorption constant, the mass transfer coefficient and the surface reaction rate constant.
摘要..............................................Ⅰ
英文摘要..........................................Ⅱ
目錄..............................................Ⅲ
圖索引............................................Ⅶ
表索引......................................... . XII
第一章 緒論...............................................1
1-1 研究起因............................................ 1
1-2 研究目的............................................ 3
第二章 文獻回顧.......................................... 4
2-1 光觸媒二氧化鈦...................................... 4
2-1-1 二氧化鈦之物理性質............................ 4
2-1-2 光觸媒(Photocatalyst)........................... 5
2-2 光催化反應.......................................... 9
2-2-1 光催化反應原理................................ 9
2-2-2 光觸媒之光催化反應機構....................... 14
2-3 活性碳的種類和特性................................. 18
2-3-1 活性碳的分類................................. 18
2-3-2 活性碳的物化特性............................. 19
2-3-3 活性碳吸附機構............................... 20
2-3-4 活性碳吸附能力指標........................... 21
2-4 光催化反應的反應器................................. 22
2-4-1 流體化床反應器............................... 22
2-4-2 流體化粒子分類............................... 24
2-5 揮發性有機化合物(VOCs)............................ 27
2-5-1 揮發性有機化合物甲苯的特性................... 27
2-6 影響UV/TiO2光催化反應處理有機化合物的操作參數 .... 29
2-6-1 反應物初始濃度............................... 29
2-6-2 反應系統溫度................................. 30
2-6-3 反應系統濕度................................. 31
2-6-4 紫外光波長與強度............................. 33
2-6-5 反應氣體流速................................. 34
2-6-6 氧氣濃度..................................... 35
2-7 二氧化鈦結合活性碳的成效........................... 36
第三章 實驗方法與材料....................................37
3-1 實驗流程........................................... 37
3-2 實驗裝置........................................... 39
3-3 實驗材料........................................... 41
3-4 實驗儀器設備....................................... 43
3-5 AC/TiO2的製備...................................... 44
3-6 操作參數........................................... 47
第四章 實驗結果與討論.................................. 49
4-1 XRD分析...........................................49
4-2 直接UV光解反應....................................51
4-3 活性碳的甲苯去除率................................. 52
4-3-1 不同相對濕度下之活性碳的甲苯去除率........... 52
4-3-2 不同濃度下之活性碳的甲苯去除率............... 53
4-3-3 不同氣體流速下之活性碳的甲苯去除率........... 54
4-3-4 UV光對於活性碳吸附的影響.....................55
4-3-5 甲苯貫穿曲線分析............................. 56
4-4 AC/TiO2粒子的甲苯去除率............................ 57
4-4-1 流體化床反應器設計之改進..................... 57
4-4-2 表面電位的影響( Zeta Potential ) ................. 61
4-4-3 紫外光的使用率............................... 63
4-4-4 活性碳對於AC/TiO2之光催化反應的影響.......... 64
4-4-5 光觸媒覆載量對光催化反應之影響............... 66
4-4-6 進料氣體相對濕度對於光催化反應之影響......... 67
4-4-7 初始進料氣體濃度對於光催化反應之影響......... 71
4-4-8 反應氣體流量對光催化反應之影響............... 75
4-4-9 AC/TiO2於排放符合標準內之操作條件............ 78
4-5 反應動力學......................................... 80
4-5-1 反應機制..................................... 81
4-5-2 反應動力式分析............................... 83
4-5-3 甲苯吸附為速率決定步驟....................... 84
第五章 結論與建議........................................90
5-1 結論............................................... 90
5-2 建議............................................... 92
參考文獻................................................93
附錄....................................................98
1. 王奕凱、陳亭穆,“二氧化鈦光觸媒分解甲醛之催化動力學研
究”,國立清華大學化學工程研究所碩士論文,2005
2. A.L. Linsebigier, G. Lu, and J.T. Yates, “Photocatalysis on TiO2
Surface: Principles, Mechanism, and Selected Results,” Chemistry
Reviews, Vol.95, P.735-758, 1995.
3. M.A. Fox, and M.T. Dulay, “Hetergeneous Photocatalysis,”
Chemistry Reviews, Vol.93, P.341-357, 1993.
4. 呂宗昕,“圖解奈米科技與光觸媒”,2003
5. 顧洋、王文,“以光纖反應器進行紫外線光觸媒程序分解氣相苯
之研究”,國立台灣科技大學化學工程系博士論文,2003
6. 袁中新、蕭德福,“以改質之TiO2光觸媒探討四氯乙烯分解率礦
化率之影響”,國立中山大學環境工程研究所碩士論文,2000
7. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann,
“Environmental Applications of Semiconductor Photocatalysis,”
Chemistry Reviews, Vol.20, P.69-95, 1995.
8. P. Zhang, F. Liang, G. Yu, Q. Chen, and W. Zhu, “A Comparative
Study on Decomposition of Gaseous Toluene by O3/UV, TiO2/UV
and O3/TiO2/UV,” Journal of Photochemistry and Photobiology,
Vol.156, P.189-194, 2003
9. L. Palmisano, V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G.
Martra, and M. Schiavello, “Photocatalytic Oxiation of Toluene on
Anatase TiO2 Catalyst : Mechanistic Aspects and FT-IR
Investigation,” Applied Catalysis, Vol.20, P.15-27, 1999
10. 陳文樟,“簡介活性碳製造、分類及應用”,中鼎化工,2001
11. http://tw.knowledge.yahoo.com/question/?qid=1105041203487

12. 袁中新、巫玉娟,“活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究”,國立中山大學環境工程研究所碩士文,2005
13. J. Seville, U. Tuzun, and R. Clift, “Processing of Particulate Solids,”
1997
14. P. L. Yue, and F. Khan, “Photocatalytic Ammonia Synthesis in a
Fluidized Bed Reactor,” Chemical Engineering Science, Vol.38,
P.1893-1900, 1983
15. L.A. Dibble, and G.B. Raupp, “Fluidized-Bed Photocatalytic
Oxidation of Trichloroethylene in Contaminated Air Streams,”
Environmental Science and Technology, Vol.26, P.492-495, 1992.
16. S. Matsuda, and H. Hatano, “Photocatalytic Removal of NOx in a
Circulating Fluidized Bed System,” Powder Technology, Vol.151,
P.61-67, 2005
17. S.D. Kin, and T.H. Lim, “Photocatalytic Degradation of
Trichloroethylene(TCE) over TiO2/silica gel in a Fluidized
Bed(CFB) Photoreactor,” Chemical Engineering and Processing,
Vol.44, P.327-334, 2005
18. D. Geldart, “Gas Fluidization Technology,” 1986
19. 尤建華、張晉魁,“以光觸媒對甲基乙基酮有機溶劑蒸氣的控制
探討”,長庚大學化工與材料工程研究所碩士論文,2006
20. T.N. Obee, and S.O. Hay,“Effects of Moisture and Temperature on
the Photooxidation of Ethylene on Titania,” Environmental Science
and Technology, Vol.31, P.2034-2038, 1997
21. Y. Luo, and D.F. Ollis, “Heterogeneous Photocatalytic Oxidation of
Trichloroethylene and Toluene Mixture in Air : Kinetic Promotion
and Inhibition, Time-Dependent Catalyst Activity,” Journal of
Catalysis, Vol.163, P.1-11, 1996
22. L. Youji, L. Xiaodong, L. Junwen, and Y. Jing, “Photocatalytic
Degradation of Methyl Orange by TiO2-coated Activated Carbon
and Kinetic Study,” Water Research, Vol.40, P.1119-1126, 2006
23. S. Hager, R. Bauer, and G. Kudielka, “Photocatalytic Oxidation of
Gaseous Chlorinated Organics over Titanium Dioxide,”
Chemosphere,Vol.41, P.1219-1225, 2000
24. H. Kumazawa, M. Inoue, and T. Kasuya, “Photocatalytic
Degradation of Volatile and Nonvolatile Organic Compounds on
Titanium Dioxide Particles Using Fluidized Beds,” Industrial and
Engineering Chemistry Research, Vol.42, P.3237-3244, 2003
25. X. Fu, L.A. Clark, W.A. Zenlter, and M.A. Anderson, “Effects of
Reaction Temperature and Water Vapor Content on The
Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal of
Photochemistry and Photobiology, Vol.97, P.181-186, 1996.
26. M.M. Ameen, and G.B. Raupp, “Reversible Catalyst Deactivation in
the Photocatalytic Oxidation of Dilute o-Xylene in Air,” Journal of
Catalysis, Vol.184, P.112-122, 1999
27. C. Raillard, V. Hequet, P.L. Cloirec, and J. Legrand, “TiO2 coating
types Influencing the Role of Water Vapor on the Photocatalytic
Oxidation of Methyl Ethyl Ketone in the Gas Phase,” Applied
Catalysis, Vol.59, P.213-220, 2005
28. H. Einaga, S. Futamura, and T. Ibusuki, “Heterogeneous Photocatalytic Oxidation of Benzene, Toluene, Cyclohexene and Cyclohexane in Humidified Air : Comparison of Decomposition Behavior on Photoirradiated TiO2 Catalyst,” Applied Catalysis, Vol.38, P.215-225, 2002

29. L. Cao, Z. Cao, S.L. Suib, T.N. Obee, S.O. Hay, and J.D. Freihaut, “Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts : Studies of Deactivation and Regeneration,” Journal of Catalysis, Vol.196, P.253-261, 2000
30. S. Hager, and R. Bauer, “Heterogeneous Photocatalytic Oxidation of Organics for Air Purification by Near UV Irradiated Titanium Dioxide,” Chemosphere, Vol.38, P.1549-1559, 1999
31. D. F. Ollis, “Photoreactors for Purification and Decomposition of Air,” The 1st International Conference on TiO2 Photocatalytic and Treatment of Water and Air, London, Ontario, Canada, P.481-494, 1992
32. K. Sakamoto, J. Jeong, and K. Sekiguchi, “Photochemical and Photocatalytic Degradation of Gaseous Toluene Using Short-
Wavelength UV Irradiation with TiO2 Catalyst : Comparison of Three UV sources,” Chemosphere, Vol.57, P663-671, 2004
33. T.N. Obee, “Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor,” Environmental Science and Technology, Vol.30, P.3578-3584, 1996
34. X. Duan, D. Sun, Z. Zhu, X. Chen, and P. Shi, ”Photocatalytic Decomposition of Toluene by TiO2 Film as Photocatalyst,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, Vol.37, P.679-692, 2002
35. K.M. Wang, and B.J. Marinas, “Control of VOC Emissions from Air-Stripping Towers : Development of Gas-Phase Photocatalytic Process,” in Photocatalytic Purification and Treatment of Water and Air, P.733-737, 1993

36. G.B. Raupp, and C.T. Junio, “Photocatalytic Oxidation of
Oxygenated Air Toxics,” Applied Surround Science, Vol.72, P.321, 1993.
37. H. Yoneyama, “Titanium Dioxide/Adsorbent Hybrid Photocatalysts
for Photodestruction of Organic Substances of Dilute
Concentrations,” Catalysis Today, Vol.58, P.133-140, 2000.
38. C.H. Ao, and S.C. Lee, “Indoor Air Purification by Photocatalyst TiO2 Immobilized on an Activated Carbon Filter Installed in an Air Cleaner,” Chemical Engineering Science, Vol.60, P.103-109, 2005
39. J. Matos, J. Laine, and J.M. Herrmann, “Synergy Effect in the
Photocatalytic Degradation of Phenol on a Suspended Mixture of
Titania and Activated Carbon,” Applied Catalysis, Vol.18, P.281-291, 1998
40. 行政院衛生署公告,行政院公報第12卷第183期,2006
41. The zetasizer system and related information,德芮克公司,2006
42. 鍾財王、李育群,“半導體光觸媒與吸附劑之複合材料對 VOCs 處理之研究”,中原大學化學工程研究所碩士論文,2003
43. E.L. Cussler, “Diffusion mass transfer in fluid system,” 1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔