跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林永盛
研究生(外文):Lin Yung-Sheng
論文名稱:溶膠凝膠法固定化微生物在廢水處理之應用
論文名稱(外文):The Application of Sol-Gel Immobilized Microorganisms in Wastewater Treatment
指導教授:陳志平陳志平引用關係
學位類別:博士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:156
中文關鍵詞:溶膠凝膠法固定化菌體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃利用溶膠凝膠技術分別對具有重金屬結合胜肽之重組大腸桿菌,與具有偶氮染料褪色能力之野生菌株Pseudomonas luteola,進行包埋固定化,並藉由批次及連續系統,測試在不同環境因素與反應器操作條件下,對模擬之重金屬與染料廢水的處理效率。
在重金屬廢水處理方面之結果顯示,固定化菌體對鎘離子的生物吸附在2.5小時內即可達到吸附平衡,其吸附動力學模式較符合Lagergren pseudo-second-order model;而平衡吸附數據,則較適合利用Langmuir isotherm進行描述,在25℃、pH 7的環境條件下,可獲得固定化菌體最大之鎘離子吸附量為79.92 mg/g。另外,在經過五次連續吸附-脫附程序後,固定化菌體對鎘離子的吸附與脫附能力並無損失,展現其優異的重覆使用性;至於連續操作之結果顯示,利用填充固定化菌體之填充床反應器,可有效進行鎘離子之連續去除與回收
染料廢水處理方面,P. luteola在固定化前後之比褪色速率分別為36.46和18.14 mg g-1 h-1,雖然固定化後造成比褪色速率下降,但固定化菌體呈現較佳之熱穩定性,褪色活性亦不會因為pH值變動而有太大之改變,且在菌體的重覆使用性及儲存活性方面,固定化菌體之表現均優於自由菌體,環境中溶氧對菌體褪色之抑制也較緩和。至於以填充床生物反應器進行連續褪色實驗之結果顯示, 30 cm之填充床高具有最佳之褪色效率,不過因為填充量過多,使得比褪色速率相對較低;而提高進料濃度會降低系統之褪色效率,但褪色速率則是隨進料濃度提高而上升,並於高濃度時趨於緩和,其趨勢與典型動力學模式相符。此外,系統之褪色效率亦隨進料流速提高而下降,但在系統所能負載的流速範圍內,累積褪色量乃隨進料流速之提高而增加,另外當流速高於48 ml/h時,可逐漸消除外部質傳效應之影響。而由長時間作之結果顯示,在以30 cm填充床高、100 mg/L進料濃度與36 ml/h進料流速之操作條件進行操作下,系統的半衰期約為15天。
在固定化材料之特性分析顯示,於alginate膠體內添加silicate可提高膠體之機械穩定性,以及降低膠體在含NaCl溶液中之溶解度,不過相對也會增加質傳阻力。藉由FT-IR光譜圖分析確認,alginate-silicate膠體中有二氧化矽Si-O-Si特徵峰產生,且由於TMOS成膠過程中所產生之silanol/silica和碳酸鹽類產生交互作用,使得碳酸鹽類結構變形,造成特徵峰位置產生偏移。由EDS/SEM之分析顯示,Si元素在膠體中之分佈,乃由膠體表面向內部遞增,符合溶膠凝膠法的成膠機制。
另一方面,利用自由菌體於掃流式膜過濾系統中進行連續褪色實驗,增加系統內之菌體量可提高系統之褪色效率,但在30 ml/h進料流速條件下,效果並不明顯,反而是再將進料流速降低至18 ml/h,系統之褪色效率可有效獲得提升。而系統之褪色速率乃隨進料濃度與進料流速之增加而提高,但在進料濃度與進料流速分別為200 mg/L和120 ml/h時,可能因為基質抑制導致褪色速率出現下降之情形。另外,由於提高染料進料濃度與進料流速均會造成系統超載,因此系統之褪色效率反而隨著進料濃度與進料流速之提高呈現遞減之趨勢。至於以50 mg/L進料濃度和30 ml/h進料流速之條件進行長時間操作,系統之半衰期約為17天。
Recombinant E. coli engineered with a metal-binding peptide and Pseudomonas luteola which was able to decolorize a variety of azo dyes via a pathway initiated by azo-bond reduction were immobilized by entrapment in SiO2 and alginate-silicate gel beads, respectively, using the sol-gel method. The efficiency of biosorption of Cd+2 ions and decolorization of azo dye by the immobilized cells under different conditions were studied in both batch and continuous systems.
The results in biosorption of Cd+2 ions show that the adsorption equilibrium could be established within 2.5 h and the kinetics was well correlated by the pseudo-second-order kinetic model. The equilibrium data were best described by the Langmuir isotherm with the maximum uptake capacity being 79.92 mg/g cell at 25℃. More than 95% of the adsorbed Cd+2 could be removed with 0.1 M CaCl2 during desorption. No significant change in adsorption capacity was found up to five repeated adsorption/desorption cycles. Continuous removal and recovery of Cd+2 could be carried out by the immobilized cells in a packed-bed reactor.
For wastewater decolorization, the immobilized cells were found to be less sensitive to changes in agitation rates (dissolved oxygen levels) and pH values. Michaelis-Menten kinetics could be used to describe the decolorization kinetics with the kinetic parameters being 36.5 mg g-1 h-1, 300.1 mg l-1 and 18.2 mg g-1 h-1, 449.8 mg l-1 for free and immobilized cells, respectively. After five repeated batch cycles, the decolorization rate of the free cells decreased by nearly 54%, while immobilized cells still retained 87% of original activity. The immobilized cells exhibited better thermal stability during storage and reaction when compared with free cells. The results of packed-bed bioreactor show that the decolorization efficiency increased with increasing bed height. However, the specific decolorization rate was lower for the highest bed height used in the study (30 cm) due to higher biomass loading in the bed. Increase of feed dye concentration resulted in decreasing decolorization efficiency of system. In contrast, the decolorization rate increased with increasing feed dye concentration and reached a saturation value, which could be described by the typical kinetic model. The decolorization efficiency also decreased with increasing feed rate, but the accumulative decolorization increased with increasing feed rate within the flow rate ranges studied in the packed-bed system. The effect of external mass transfer could be eliminated for feed rate higher than 48 ml/h. The half-life of the packed-bed bioreactor operated with 30 cm bed-length, 100 mg/L feed dye concentration and 36 ml/h feed rate was about 15 days.
By introducing silicate into alginate gel matrix not only enhanced the mechanical strength and structure integrity of the gel bead but also decreased its solubility in NaCl solution. However, the mass transfer resistance increased in the presence of silicate in the gel matrix. The FT-IR spectrum of alginate-silicate sol-gel matrix shows a new band at 1078 cm-1 due to the symmetric stretching of Si-O-Si groups. The bands at 1640 and 1430 cm-1 could be assigned to asymmetric and symmetric COO- deformation, which confirms the interaction of carboxylate groups with silanol/silica derived from in situ gelation of TMOS. The EDS/SEM analysis confirms the gelling mechanism and diffusion of gel-forming components during the gelling process, with silicate density increased from the surface layer to the core part and alginate density showing a reverse trend in alginate-silicate gel beads.
For continuous decolorization of wastewater by free cells in tangential flow filtration (TFF) system, the decolorization efficiency increased with increasing biomass loading, which was less obvious at high feed rate (30 ml/h) than at low feed rate (18 ml/h). The specific decolorization rate increased by increasing the feed dye concentration and the feed rate until reaching 200 mg/L feed dye concentration and 120 ml/h feed rate, which was probably due to substrate inhibition. Alternatively, increase of both feed dye concentration and feed rate could cause overload of the system and resulted in a drop of the decolorization efficiency. The half-life of the system operated under 1.25 g cell loading, 50 mg/L feed dye concentration and 30 ml/h feed rate was about 17 days.
指導教授推薦書………………………………………………………….i
口試委員會審定書………………………………………………………ii
授權書…………………………………………………………………...iii
誌謝……………………………………………………………………...iv
中文摘要…………………………………………………………………v
英文摘要..………………………………………………………………vii
目錄……………………………………………………………………….x
圖目錄…………………………………………………………………...xv
表目錄……………………………………………………………….....xxi
符號表………………………………………………………………...xxiii
縮寫表………………………………………………………………….xxv
第一章 序論……………………………………………………………...1
1-1 前言....……………………………………………………………….1
1-2 研究動機與目的…………………………………………………….2
第二章 文獻回顧與原理………………………………………………...4
2-1 細胞固定化………………………………………………………….4
2-1-1 固定化技術之定義……………………………………………..4
2-1-2 酵素或微生物固定化方法……………………………………..4
2-1-3 固定化載體基材之比較………………………………………..9
2-1-3-1 天然載體…………………………………………………….12
2-1-3-2 合成載體…………………………………………………….14
2-2 溶膠-凝膠法(sol-gel)之原理………………………………………16
2-3 溶膠-凝膠法在固定化生物觸媒之應用.....................20
2-4 水中重金屬之去除………………………………………………...21
2-5 生物重金屬處理法………………………………………………...22
2-5-1 生物金屬處理之機構…………………………………………23
2-6 染整廢水之處理…………………………………………………...26
2-6-1 物理處理………………………………………………………26
2-6-2 化學處理………………………………………………………27
2-7 染整廢水之生物處理……………………………………………...28
2-7-1偶氮還原酵素對色度之去除機制……………………………29
2-8 染整廢水生物處理之優缺點……………………………………...30
2-9 薄膜程序…………………………………………………………...31
2-9-1 薄膜分類與形式………………………………………………32
2-9-2 薄膜操作限制…………………………………………………35
2-9-3 薄膜生物處理程序……………………………………………36
2-9-4 薄膜生物反應器(Membrane Bioreactor, MBR)程序………...36
第三章 實驗材料與方法……………………………………………….39
3-1 實驗設備…………………………………………………………...39
3-2 實驗藥品…………………………………………………………...41
3-3 重金屬廢水之處理………………………………………………...42
3-3-1 菌種及培養基…………………………………………………42
3-3-2 固定化微生物之製備…………………………………………42
3-3-3 金屬離子吸附探討……………………………………………44
3-3-4 不同溫度下固定化菌體對金屬離子之吸附實驗……………45
3-3-5 不同初始pH值下固定化菌體對金屬離子之吸附實驗…….45
3-3-6 金屬離子吸/脫附實驗………………………………………...45
3-3-7 連續吸附、脫附實驗…………………………………………46
3-3-8 SEM樣品之前處理……………………………………………47
3-4 含染料廢水之處理………………………………………………...48
3-4-1 菌種及培養方法………………………………………………48
3-4-2 細胞之光學密度測量…………………………………………48
3-4-3 染料及其濃度測定……………………………………………49
3-4-4分析方法……………………………………………………….49
3-4-5 固定化微生物之製備…………………………………………50
3-4-6 不含菌之空白膠體對染料之吸附實驗………………………51
3-4-7 不同包埋量之固定化菌體之染料褪色實驗…………………52
3-4-8 不同染料初始濃度下之染料褪色實驗………………………52
3-4-9 不同初始pH值下之染料褪色實驗…………………………..52
3-4-10 不同溫度下之染料褪色實驗………………………………..53
3-4-11 不同轉速下之染料褪色實驗………………………………..53
3-4-12 重覆批次之染料褪色實驗…………………………………..53
3-4-13 不同儲存時間之染料褪色實驗……………………………..54
3-4-14 以填充床反應器進行連續褪色實驗………………………..54
3-4-14-1 不同填充床高之連續褪色實驗………………………...54
3-4-14-2 不同染料進料濃度之連續褪色實驗…………………...55
3-4-14-3 不同染料進料流速之連續褪色實驗…………………...55
3-4-15 SEM樣品之前處理…………………………………………..55
3-5 固定化材料特性測試……………………………………………...56
3-5-1溶解度測試…………………………………………………….56
3-5-2 機械穩定性測試………………………………………………56
3-5-3 擴散係數測量…………………………………………………56
3-5-4 傅立葉轉換紅外線光譜儀(FT-IR)分析………………………57
3-5-5 X射線能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS)分析………………………………………………………57
3-6 以切向流薄膜反應器系統進行連續褪色實驗…………………...58
3-6-1不同菌量之連續褪色實驗…………………………………….58
3-6-2不同染料進料濃度與進料流速之連續褪色實驗…………….59
第四章 結果與討論…………………………………………………….60
4-1 重金屬廢水之處理………………………………………………...60
4-1-1 不含菌之空白膠體對鎘離子之吸附探討……………………60
4-1-2 平衡吸附實驗…………………………………………………60
4-1-3 吸附動力模式(kinetics modeling)…………………………….61
4-1-4 等溫吸附曲線(adsorption isotherms)…………………………63
4-1-5 pH值和溫度對鎘離子吸附之影響…………………………...67
4-1-6脫附動力實驗………………………………………………….71
4-1-7 金屬離子之脫附平衡及固定化菌體重覆使用性探討………73
4-1-8 連續吸附、脫附實驗…………………………………………75
4-1-9 固定化菌體之SEM分析……………………………………..78
4-2 染料廢水之處理…………………………………………………...81
4-2-1 不含菌空白膠體對染料之吸附現象…………………………81
4-2-2 以自由菌體與固定化菌體進行染料脫色之濃度變化曲線…81
4-2-3 最適菌體包埋量測試…………………………………………83
4-2-4 不同染料濃度對褪色速率之影響……………………………84
4-2-5初始pH值對褪色速率之影響………………………………..88
4-2-6 溫度對褪色速率之影響………………………………………91
4-2-7 轉速對褪色速率之影響………………………………………94
4-2-8 重覆批次操作對褪色速率之影響……………………………97
4-2-9 固定化菌體之熱穩定性……………………………………..100
4-2-10 以填充床反應器進行連續褪色實驗………………………107
4-2-10-1 以不含菌之空白膠體顆粒填充床反應器進行染料去除……………………………………………………….108
4-2-10-2 不同填充床高之影響………………………………….108
4-2-10-3 不同進料濃度之影響………………………………….111
4-2-10-4 不同進料流速之影響………………………………….111
4-2-10-5 長時間操作穩定性…………………………………….116
4-2-11 固定化菌體之SEM分析…………………………………..118
4-3 固定化材料特性分析…………………………………………….122
4-3-1 溶解度測試…………………………………………………..122
4-3-2 機械穩定性測試……………………………………………..124
4-3-3 擴散係數……………………………………………………..125
4-3-4 FT-IR分析…………………………………………………….128
4-3-5 EDS分析……………………………………………………...130
4-4 以切向流薄膜反應器(TFF)系統進行連續褪色實驗……………134
4-4-1 不同菌量對染料褪色之影響………………………………..134
4-4-2 不同進料濃度與進料流速對染料褪色之影響……………..136
4-4-3 長時間操作穩定性…………………………………………..139
第五章 結論…………………………………………………………...141
未來方向……………………………………………………………….143
參考文獻……………………………………………………………….145


圖目錄

圖2-1、酵素或微生物細胞固定化方法………………………………….8
圖2-2、褐藻膠之化學結構單元….……………………………………..13
圖2-3、鹿角菜之化學結構單元………………………………………...13
圖2-4、聚丙烯醯胺(polyacrylamide)之結構式………………………...15
圖2-5、聚乙烯醇(polyvinyl alcohol)之化學結構式…………………....16
圖2-6、溶膠凝膠聚合過程……………………………………………...18
圖2-7、偶氮還原作用…………………………………………………...30
圖2-8、微過濾膜示意圖: (a)垂直式過濾膜,(b)掃流式過濾膜……….33
圖2-9、傳統活性污泥程序與MBR程序之比較……………………....37
圖2-10、MBR程序之分類,(a) 固液分離薄膜程序;(b) 氧傳輸薄膜程序;(c) 萃取式薄膜程序……………………………………37
圖3-1、重金屬結合胜肽之分子結構…………………………………...42
圖3-2、製備silica gel beads之裝置簡圖………………………………43
圖3-3、空白膠體與固定化菌體之照片………………………………...44
圖3-4、以填充床反應器進行連續式實驗之裝置簡圖………………...46
圖3-5、C. I. Reactive red 22之化學結構………………………………49
圖3-6、製備alginate-silicate sol-gel beads之裝置簡圖………………..51
圖3-7、微過濾膜反應器褪色實驗設置簡圖…………………………...59
圖4-1、以溶膠凝膠法固定化之大腸桿菌在不同鎘離子初始濃度下之生物吸附動力曲線……………………………………………62
圖4-2、固定化菌體在不同鎘離子初始濃度下進行生物吸附之線性pseudo-first-order動力模式…………………………………64

圖4-3、固定化菌體在不同鎘離子初始濃度下進行生物吸附之線性pseudo-second-order動力模式………………………………64
圖4-4、固定化菌體在不同溫度下之Langmuir isotherms線性迴歸圖形……………………………………………………………...68
圖4-5、固定化菌體在不同溫度下之Freundlich isotherms線性迴歸圖形……………………………………………………………...68
圖4-6、ln(KL)對應1/T之關係圖……………………………………...70
圖4-7、溶液中初始pH值對固定化菌體進行鎘離子生物吸附之影響……………………………………………………………..72
圖4-8、溫度對固定化菌體進行鎘離子生物吸附之影響…………….72
圖4-9、固定化菌體進行鎘離子生物吸附達到吸附平衡後,以0.1 M CaCl2進行鎘離子脫附之脫附動力曲線…………………….74
圖4-10、固定化菌體在不同鎘離子初始濃度下進行生物吸附達到吸附平衡後,利用0.1 M CaCl2進行鎘離子脫附之結果比較……………………………………………………………...74
圖4-11、以同一批固定化菌體連續進行五次鎘離子之吸附-脫附循環操作之結果比較……………………………………………...75
圖4-12、固定化菌體於填充床反應器中在不同進料流速下對鎘離子進行連續吸附之突破曲線……………………………………...76
圖4-13、以0.1 M CaCl2對填充床反應器中之固定化菌體進行鎘離子脫附其放流水中鎘離子之濃度變化………………………...77
圖4-14、空白Silica膠體球表面之SEM照片(2000倍)……………..79
圖4-15、包埋重組大腸桿菌之Silica膠體球表面SEM照片(3000倍)..79
圖4-16、空白Silica膠體球內部之SEM照片(2000倍)………………..80
圖4-17、包埋重組大腸桿菌之Silica膠體球內部SEM照片(3000倍)..80
圖4-18、未包埋菌體之alginate-silicate sol-gel材料對reactive red 22之吸附……………………………………………………….82
圖4-19、以P. luteola自由菌體與固定化菌體對Reactive red 22染料進行褪色實驗之濃度變化曲線………………………………...82
圖4-20、以不同菌體包埋量所製備之固定化菌體進行染料褪色實驗 之活性比較………………………………………………….84
圖4-21、不同染料初始濃度對P. luteola自由菌體褪色之影響……….85
圖4-22、不同染料初始濃度對P. luteola固定化菌體褪色之影響…….85
圖4-23、P. luteola自由菌體在不同染料初始濃度下之比褪色速率與褪色效率………………………………………………………...87
圖4-24、P. luteola固定化菌體在不同染料初始濃度下之比褪色速率與褪色效率……………………………………………………...87
圖4-25、溶液中初始pH值對P. luteola自由菌體與固定化菌體進行
褪色實驗之影響…………………………………………….89
圖4-26、溫度對P. luteola自由菌體進行褪色實驗之影響…………….92
圖4-27、溫度對P. luteola固定化菌體進行褪色實驗之影響………….92
圖4-28、ln(v)對應1/T之關係圖………………………………………93
圖4-29、以P. luteola自由菌體在不同轉速條件下進行褪色實驗,系統中之溶氧變化……………………………………………...95
圖4-30、以P. luteola固定化菌體在不同轉速條件下進行褪色實驗,系統中之溶氧變化…………………………………………...95
圖4-31、轉速對P. luteola自由菌體進行褪色實驗之影響…………..96
圖4-32、轉速對P. luteola固定化菌體進行褪色實驗之影響………..96
圖4-33、以P. luteola自由菌體進行五次重複批次褪色實驗之染料殘餘濃度對時間之關係圖……………………………………...98
圖4-34、以P. luteola固定化菌體進行五次重複批次褪色實驗之染料殘餘濃度對時間之關係圖…………………………………...98
圖4-35、P. luteola自由菌體在4℃環境下之儲存穩定性…………….101
圖4-36、P. luteola固定化菌體在4℃環境下之儲存穩定性…………101
圖4-37、P. luteola自由菌體在15℃環境下之儲存穩定性…………..102
圖4-38、P. luteola固定化菌體在15℃環境下之儲存穩定性………...102
圖4-39、P. luteola自由菌體在25℃環境下之儲存穩定性…………...103
圖4-40、P. luteola固定化菌體在25℃環境下之儲存穩定性………..103
圖4-41、ln(E/E0)對時間t之關係圖(自由菌體)………………………105
圖4-42、ln(E/E0)對時間t之關係圖(固定化菌體)……………………105
圖4-43、ln(kd)對溫度倒數之關係圖(自由菌體)……………………...106
圖4-44、ln(kd)對溫度倒數之關係圖(固定化菌體)…………………...106
圖4-45、以填充空白膠體和固定化菌體之填充床反應器進行染料去除實驗之結果………………………………………………….109
圖4-46、不同填充床高對填充床反應器進行連續褪色實驗之影響...109
圖4-47、以不同填充床高之填充床反應器進行連續褪色實驗之累積褪色量對操作時間之變化…………………………………….110
圖4-48、以不同進料濃度進行填充床反應器連續褪色實驗之出口染料殘餘濃度變化……………………………………………….112
圖4-49、以不同進料濃度進行填充床反應器連續褪色實驗之累積褪色量對操作時間之變化……………………………………….112
圖4-50、以不同進料流速進行填充床反應器連續褪色實驗之出口染料殘餘濃度變化……………………………………………….113
圖4-51、以不同進料流速進行填充床反應器連續褪色實驗之累積褪色量對操作時間之變化…………………………………….....113
圖4-52、XCS0對ln(1-X)之關係圖……………………………………...115
圖4-53、以填充床反應器進行連續褪色實驗之長時間操作穩定性...117
圖4-54、以填充床反應器進行長時間連續褪色實驗之累積褪色量對操作時間之變化……………………………………………….117
圖4-55、不含菌之ASSGM膠球表面(outer surface)之SEM照片(10000倍)………………………………………………………….119
圖4-56、不含菌之ASSGM膠球內部(core part)之SEM照片(10000倍)………………………………………………………….119
圖4-57、包埋P. luteola之ASSGM膠球表面外層(outer surface)之SEM照片(10000倍)…………………………………………….120
圖4-58、包埋P. luteola之ASSGM膠球表面內層(inner surface)之SEM照片(10000倍)………………………………………………120
圖4-59、包埋P. luteola之ASSGM膠球內部(core part)之SEM照片(10000倍)……………………………………………………121
圖4-60、包埋P. luteola之ASSGM膠球截面之SEM照片(50倍)……121
圖4-61、alginate gel beads在不同NaCl/CaCl2 濃度比例溶液中之粒徑變化………………………………………………………….123
圖4-62、alginate-silicate gel beads在不同NaCl/CaCl2 濃度比例溶液中之粒徑變化………………………………………………….123
圖4-63、silica gel beads在不同NaCl/CaCl2 濃度比例溶液中之粒徑變化…………………………………………………………….124
圖4-64、alginate、alginate-silicate和silica gel beads之機械穩定度….126
圖4-65、以不同空白膠體進行擴散係數測定,溶液中染料殘餘濃度對時間之變化………………………………………………….128
圖4-66、alginate和alginate-silicate膠體之FTIR光譜圖……………..129
圖4-67、alginate-silicate膠體球表面之EDS分析結果………………131
圖4-68、alginate-silicate膠體球表面至表面下5 µm之EDS分析結果…………………………………………………………...132
圖4-69、alginate-silicate膠體球內部中心之EDS分析結果…………133
圖4-70、不同菌體量和進料流速對TFF系統中褪色速率之影響…...135
圖4-71、不同菌體量和進料流速對TFF系統中褪色效率之影響..….135
圖4-72、不同進料流速對TFF系統中褪色效率之影響….…………..137
圖4-73、不同進料濃度和進料流速對TFF系統中褪色速率之影響...137
圖4-74、TFF系統在染料進料濃度為200 mg/L時,於不同進料流速下進行連續褪色實驗之系統中溶氧量變化…………….....138
圖4-75、不同進料濃度和進料流速對TFF系統中褪色效率之影響...139
圖4-76、以TFF系統進行連續褪色實驗之長時間操作穩定性……...140


表目錄

表2-1、各種固定化方法之優缺點比較……………………………….10
表2-2、選擇固定化方法及擔體材料時必須考慮的基本條件………..10
表2-3、固定化材質應用於廢水處理之特性及選用性質……………...11
表2-4、薄膜之分類與功能…………………………………………….33
表2-5、不同有機薄膜材質之比較…………………………………….34
表2-6、不同MBR程序之優缺點比較………………………………..38
表4-1、以Lagergren pseudo-first-order 和pseudo-second-order動力模式描述固定化菌體進行鎘離子生物吸附之參數…………….65
表4-2、以Langmuir和Freundlich等溫吸附曲線描述固定化菌體在不同溫度下進行鎘離子生物吸附之線性迴歸參數…………….69
表4-3、以不同材料包埋P. luteola之固定化菌體進行褪色實驗之Michaelis-Menten動力學參數……………………………….88
表4-4、alginate-silicate空白膠球對褪色培養基中初始pH值之影響...90
表4-5、P. luteola自由菌體與固定化菌體在五次重複批次褪色實驗之相對比褪色速率(RSDR)與t1/2之比較………………………..99
表4-6、以自由菌體和不同材料固定之P. luteola進行重複批次褪色實驗之結果比較………………………………………………...100
表4-7、自由菌體和固定化菌體在不同儲存溫度下之失活常數與失活活化能比較…………………………………………………...104
表4-8、以不同填充床高之填充床反應器進行連續褪色實驗之結果比較……………………………………………………………...110
表4-9、以不同進料流速進行填充床反應器連續褪色實驗之結果比較……………………………………………………………...115
表4-10、在不同進料流速操作下之Michaelis-Menten方程式參數….115
表4-11、染料在alginate和alginate-silicate膠體球內之擴散係數…..127


符號表

A : Arrhenius常數
B: 細胞濃度,(g dry weight/L)
C : 染料濃度,(mg/L)
C0 : 金屬離子初始濃度(染料初始濃度),(mg/L)
Cf : 染料平衡濃度,(mg/L)
Cf,eq : 金屬離子平衡濃度,(mg/L)
De : 膠球之擴散係數 (m2s-1)
E : 自由菌體與固定化菌體在不同儲存時間之褪色活性,(mg g-1 h-1)
E0 : 自由菌體與固定化菌體在t = 0之褪色活性,(mg g-1 h-1)
Ea : 反應活化能,(KJ/g mol)
Ed : 失活活化能,(KJ/g mol)
k1 : Lagergren一階吸附速率常數,(min-1)
k2 : Lagergren二階吸附速率常數,(g mg-1 min-1)
kd : 失活常數,(h-1)
kL : 質傳係數(mass transfer coefficient)
K : Monod-type動力常數,(mg/L)
KF : Freundlich isotherm常數
Km : Michaelis-Menten動力常數,(mg l-1)
KL : 平衡(結合)常數,(L/mg)
MB : 溶劑之分子量
n : Freundlich isotherm常數
q : 單位體積固定化材質吸附染料的克數,(mg/cm3)
qmax : 單位吸附劑之最大金屬離子吸附量,( mg/g )
qeq : 單位吸附劑之平衡金屬離子吸附量,(mg/g)
qt : 吸附劑在時間為t時之金屬離子吸附之量,(mg/g)
r : 膠球中心到膠球內部任一位置之距離,(m)
R : 膠球之半徑,(m)
R2 : 相關係數(correlation coefficients)
S : 染料濃度,(mg/L)
S0 : 染料初始濃度,(mg/L)
Sb : 外部溶液中的基質濃度,(mg/L)
SS : 界面的基質濃度,(mg/L)
t:操作時間,(h)
T : 絕對溫度
v : 比褪色速率,(mg g-1 h-1)
vmax : 最大比褪色速率,(mg g-1 h-1)
V : 金屬離子溶液體積,(mL)
VA : 溶質在沸點之摩爾體積(molar volume)
VS : 染料溶液體積,(mL)
VI : 固定化菌體顆粒之體積,(mL)
W : 固定化菌體乾重,(g)
X : 轉化率
α : 為溶液體積對膠球體積之比值
µB : 溶劑之黏度 (Pa•s or kg/m•s)
τ : 滯留時間(residence time) (h)
φ : 溶劑之結合常數(association parameter)


縮寫表

ASSGM : Alginate-Silicate Sol-Gel Matrix
CA : Calcium Alginate
CGN : k-carrageenan
DE : Decolorization Efficiency
EDS : X射線能量散佈分析儀
FT-IR : 傅立葉轉換紅外線光譜儀
MBR : Membrane Bioreactor
PAA : Polyacrylamide
RSDR : Relative Specific Decolorization Rate
SDR : Specific Decolorization Rate
TFF : 切向流薄膜反應器系統
1.陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司,第311頁。
2.張嘉修,微生物技術在廢水處理之應用,化工技術第九卷第二期,2001。
3.Branyik, T., Kuncova, G., Paca, J., 2000. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol. Appl. Microbiol. Biotechnol. 54, 168-172.
4.Sakai, S., Ono, T., Ijima, H., Kawakami, K., 2001. Synthesis and transport characterization of alginate/aminopropyl-silicate/alginate microcapsule: application to bioartificial pancreas. Biomaterials 22, 2827-2949.
5.Conroy, J. F. T., Power, M. E., Martin, J., Earp, B., Hosticka, B., Daitch, C. E., Norris, P. M., 2000. Cells in sol-gels I: a cytocompatible route for the production of macroporous silica gels. J. Sol-Gel Sci. Technol. 18, 269-283.
6.陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司,第48-57頁,1990。
7.Tramper, J., Grootjen, D. R. J., 1986. Operating performance of Nitrobacter agilis immobilized in carrageenan. Enzyme Microb. Technol. 8, 477-480.
8.Lewandowski, Z., Bakke, R., Characklis, W. G., 1987. Nitrification and autotrophic denitrification in calcium alginate beads. Water Sci. Technol. 19, 175-182.

9.Leenen, E. J. T. M., Dos Santos, V. A. P., Grolle, K. C. F., Tramper, J., Wijffels, R. H., 1996. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Res. 30, 2985-2996.
10.King, K., 1994. Changes in the functional properties and molecular weight of sodium alginate following by irradiation. Food Hydrocoll. 8, 83-96.
11.Kierstan, M., Bucke, C., 1977. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 19, 387.
12.陳國誠,微生物酵素工程學,藝軒出版社,第270-276頁,1992。
13.陳姍玗,偶氮染料褪色程序之開發與生態工程之探討,碩士論文,逢甲大學化工所,2001。
14.陳國誠,微生物酵素工程學,藝軒出版社,第268-269頁,1992。
15.Tanaka, K., Tada, M., Kimata, T., Harada, S., Fujii, Y., Mizuguchi, T., Mori, N., Emori, H., 1991. Development of new nitrogen removal systems using nitrifying bacteria immobilized in synthetic resin pellets. Water Sci. Technol. 23, 681-690.
16.Takeshima, M., Kimata, T., Mori, N., Emori, H., 1993. “Pegasus”, an innovative high-rate BOD and nitrogen removal process for municipal wastewater, 66th WEF Annual Conference, Anaheim, CA.
17.Brinker, C. J., Scherer, G., 1990. The physics and chemistry of sol-gel processing. Sol-Gel Science ; Academic Press: San Diego, CA.
18.Brinker, C. J., 1998. Hydrolysis and condensation of silicates: effects on structure. J. Non-Crystalline Solids 100, 31-50.
19.周禮君、田珮,有機矽烷氧基前驅物衍生的有機-無機混成溶膠凝膠材料,化工技術第八卷第五期,2000。
20.林維新,以溶膠凝膠法包埋脂肪分解酵素以生產芳香酯之研究,碩士論文,長庚大學化材所,1999。
21.黃幼念,利用溶膠凝膠法製備載體固定酵素,碩士論文,長庚大學化材所,2000。
22.Gill, I., Ballesteros, A., 2000. Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals, TIBTECH. 18, 282-296.
23.Bergogne, L., Fennouh, S., Livage, J., Roux, C., 1998. Bioencapsulation in sol-gel glasses. Mat. Res. Soc. Symp. Proc. 519, 171-181.
24.Li, Q., Luo, G., Wang, Y., Zhang, X., 2000. Immobilization of glucoseoxidase in sol-gel matrix and its application to fabricate chemiluminescent glucose sensor. Mater. Sci. and Eng. 11, 67-70.
25.Shtelzer, S., Rappoport, S., Avnir, D., Ottolenghi, M., Braun, S., 1992. Properties of trypsin and of acid phosphatase immobilized in sol-gel glass matrices. Biotechnol. Appl. Biochem. 15, 227-235.
26.Branyik, T., Kuncova, G., 2000. Changes in phenol oxidation rate of a mixed microbial culture caused by sol-gel immobilization. Biotechnol. Lett. 22, 555-560.
27.Soltmann, U., Raff, J., Selenska-Pobell, S., 2003. Biosorption of heavy metal by sol-gel immobilized Bacillus sphaericus cells, spores and s-layers. J. Sol-Gel Sci. Technol. 26, 1209-1212.
28.Rangsayatorn, N., Pokethitiyook, P., Upatham, E. S., Lanza, G. R., 2004. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30, 57-63.
29.張嘉修,重金屬污染的生物處理技術,化工第41卷第3期,1994。

30.Williams, J. W., Silver, S., 1984. Bacterial resistance and detoxification of heavy metals. Enzyme Microb. Technol. 6, 530-537.
31.Misra, T. K., 1992. Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid. 27, 4-16.
32.Belliveau, B. H., Trevors, J. T., 1989. Mercury resistance and detoxification in bacteria. Appl. Organomet. Chem. 3, 283-294.
33.Foster, T. J., 1987. The genetics and biochemistry of mercury resistance. CRC Crit. Rev. Microbiol. 15, 117-140.
34.Shumate, S. E. II and Strandberg, G. W., 1985. Accumulation of metals by microbial cells. In: Comprehensive Biotechnology (Moo-Young, M., Ed.) Pergamon Press, NY., 235-247.
35.Brierley, C. L., Brierley, J. A., Davidson, M. S., 1989. Applied microbial processes for metals recovery and removal from wastewater. In: Metal Ions and Bacteria (Beveridge, T. J. and Doyle, R. J., Eds) John Wiley & Sons, N. Y., 359-382.
36.Fourest, E., Roux, J. C., 1992. Heavy metal biosorption by Fungi mycelial by-products: mechanisms and influence of pH. Appl. Microbiol. Biotechnol. 37, 399-401.
37.Chang, J. S., 1993. Kinetic models and bioreactor operations for mercury removal and detoxification by Pseudomonas aeruginosa PU21. (Rip 64), Ph. D. Dissertation, University of California, Irvine.
38.康世芳,染整廢水處理(上),染化雜誌,Vol. 79, pp. 35-41,1991。
39.林獻龍,染色廢水之凝聚處理,染化雜誌,Vol. 137, pp. 55-59,1996。
40.楊造燕,水污染防治及城市污水資源化技術,科學出版社,1993。


41.Wong, P. K., Yuen, P. Y., 1996. Decolorization and biodegradation of methyl red by Klebsiella Pneumoniae RS-13. Water Res. 30, 1763-1774.
42.Anliker, A., 1979. Ecotoxicology of dyestuffs-A joint effort by industry. Ecotoxicol. Environ. Saf. 3, 59-74.
43.Chang, K. T., Fulk, G. E., Andrews, A. W., 1981. Mutagenicity test of some commonly used dyes. Appl. Environ. Microbiol. 42, 641-648.
44.Kumar, M. N. V. R., Sridhari, T. R., Bhavani, K. D., Dutta, P. K., 1998. Trends in color removal from textile mill effluents. Colorage 40, 25-34.
45.Robinson, T., McMullan, G., Marchant, R., Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77, 247-255.
46.Raghavacharya, C., 1997. Colour removal from industrial effluents - a comparative review of available technologies. Chem. Eng. World 32, 53-54.
47.Ogutveren, U. B., Kaparal, S., 1994. Colour removal from textile effluents by electrochemical destruction. J. Environ. Sci. Health A 29, 1-16.
48.Bell, J. P., Tsezos, M., 1988. The selectivity of biosorption of hazardous organics by microbial biomass. Water Res. 22, 1245-1251.
49.Cripps, C., Bumpus, J. A., Aust, S. D., 1990. Biodegradation of azo and heterocyclic dyes by phanerochaete chrysosporium. Appl. Environ. Microbiol. 56, 1114-1118.
50.Paszcynski A., Pasti-grigsby, M. B., Goszczynski, S., Crawford, R. L., Crawford, D. L., 1992. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl. Environ. Microbiol. 58, 3598-3604.
51.陳燕春、廖昭偉、熊光濱,利用白腐真菌Phanerochaete chrysosporium ACC 24725分解染料色素之研究,中國農業化學會誌,Vol. 29, No.4, pp. 439-477,1991。
52.張坦卿、曾四恭,白腐真菌在攪動環境下分解反應性染料之特性,中國環境工程會刊,Vol. 2, No.4, pp. 225-234,1992。
53.Wong, P. K., Yuen, P. Y., 1996. Decolorization and biodegradation of methyl red by Klebsiella Pneumoniae RS-13, Water Res. 30, 1763-1774.
54.Idaka, E., Ogawa, T., Horitsa, H., 1982. Degradative pathway of p-aminoazobenzene by Bacillas subtilis. Eur. J. Appl. Microbiol. 15, 141-143.
55.Govindaswami, Schnidt, T. M., White, D. C., Loper, J. C., 1993. Phylogentic analysis of a bacteria aerobic degradation of azo dyes. J. Bacteriol. 75, 6062-6066.
56.Haug, W., A. Schmidt, A., Nortemann, B., Hempel, D. C., Stolz, A. and Kanckmuss, H. J., 1991. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacteria consortium. Appl. Environ. Microbiol. 57, 3144-3149.
57.Zimmermann T., Kulla , H. G., Leisinger, T., 1982. Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur. J. Biochem. 129, 197-203.
58.Chung K. T., Fulk, G. E., Andrews, A. W., 1981. Mutagenicity test of some commonly used dyes. Appl. Environ. Microbiol. 42, 641-648.
59.Ghosh, D. K., Mandal, A., Chaudhuri, J., 1992. Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1. FEMS Micro. Biol. Lett. 98, 229-234.
60.Hu, T. L., 1994. Decolourization of reactive azo dye by transformation with Pseudomonas luteola. Bioresource Technol. 49, 47-51.
61.高肇藩、張祖恩、何忠陽,染料成分之厭氧生物分解性及毒性,第十三屆廢水處理技術研討會論文集,第300-314頁,1988。
62.Chung, K. T., Stevens, S. E., 1993. Degradation of azo dyes by environmental microorganisms and helminthes. Environ. Toxicol. Chem. 12, 2121-2132.
63.林永盛,生長與染料褪色過程代謝產物促進染料生物褪色之探討,碩士論文,逢甲大學化學工程研究所,2002。
64.Nicolaisen, B., 2003. Developments in membrane technology for water treatment. Desalination 153, 355-360.
65.Weber, J. W. J., LeBoeuf, E. J., 1999. Processes for advanced treatment of water. Water Sci. Technol. 40, 11-19.
66.陳建銘,生物薄膜程序處理合成生活污水,碩士論文,國立交通大學環境工程研究所,2002。
67.張肇栓,連續式中空纖維微過濾膜反應器在染料廢水生物處理之應用,碩士論文,逢甲大學化學工程研究所,2001。
68.Chang, J. S., Tsai, L. J., Vigneswaran, S., 1996. Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration. Water Sci. Technol. 34, 133-140.
69.林何印,超濾與逆滲透薄膜程序處理及回收工業廢水之研究,碩士論文,國立中央大學環境工程研究所,2005。
70.廢水薄膜處理技術應用與推廣手冊,經濟部工業局,2000。
71.Li, X., Li, W., Lu, S., Wang, A., Zhu, Q., Ling, Y., 2002. Treating dyeing waste water by ceramic membrane in crossflow microfiltration. Desalination 149, 199-203.
72.Ueda, T., Hata, K., Kikuoka, Y., Seino, O., 1997. Effect of aeration on suction pressure in a submerged membrane bioreactor. Water Res. 31, 489-494.
73.Ahn, K. H., Song, K. G., 1999. Treatment of domestic wastewater using microfiltration for reuse of wastewater. Desalination 126, 7-14.
74.Davies, W. J., Le, M. S., Heath, C. R., 1998. Intensified activated sludge process with submerged membrane microfiltration. Water Sci. Technol. 38, 421-428.
75.謝耀聰,薄膜生物反應槽脫硝攝磷行為之探討,碩士論文,中原大學土木工程學系,2005。
76.Brindle, K., Stephenson, T., 1996. The application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng. 49, 601-610.
77.Tey, S. Y., Tsai, S. C., Hsu, C. C., Pearl, H. P., 2003. Genetic engineering of bioactive peptides for enhanced uptake and bioaccumulation of cadmium. The 37th Annual Meeting of The Chinese Society of Microbiology. p. 36.
78.Singh, S., Rai, B. N., Rai, L. C., 2001. Ni(II) and Cr(VI) sorption kinetics by Microcystis in single and multimetallic system. Process Biochem. 36, 1205-1213.
79.Aksu, Z., 2001. Equilibrium and kinetic modeling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep. Purif. Technol. 21, 285-294.
80.Arica, M. Y., Bayramoglu, G., Yilmaz, M., Bektas, S., Genc, O., 2004. Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater. B109, 191-199.
81.Benguella, B., Benaissa, H., 2002. Cadmium removal from aqueous solution by chitin: kinetic and equilibrium studies. Water Res. 36, 2463-2474.
82.Inbaraj, B. S., Sulochana, N., 2004. Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution. Bioresource Technol. 94, 49-52.
83.Kapoor, A., Viraraghavan, T., Cullimore, D. R., 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technol. 70, 95-104.
84.Zhang, L., Zhao, L., Yu, Y., Chen, C., 1998. Removal of lead from aqueous solution by non-living Rhizopus nigricans. Water Res. 32, 1437-1444.
85.Akhtar, N., Iqbal, J., Iqbal, M., 2004. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. B108, 85-94.
86.Arica, M. Y., Arpa, C., Ergene, A., Bayramoglu, G., Genc, O., 2003. Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers 52, 167-174.
87.Cruz, C. C. V., Da Costa, A. C. A., Henriques, C. A., 2004. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresource Technol. 91, 249-257.
88.Baldrian, P., 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 32, 78-81.
89.Delgado, A., Anselmo, A. M., Novais, J. M., 1998. Water Environ. Res. 70, 370.
90.Bag, H., Lale, M., Turker, A. R., 1999. Determination of Cu, Zn and Cd in water by FAAS after preconcentration by baker’s yeast (Saccharomyces cerevisiae) immobilized on sepiolite. Fresenius J Anal. Chem., 363, 224-230.
91.Manju, G. N., Krishnan, K. A., Vinod, V. P., Anirudhan, T. S., 2002. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron(III) oxide. J. Hazard. Mater. B91, 221-238.
92.Bayramoglu, G., Bektas, S., Arica, M. Y., 2003. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J. Hazard. Mater. B101, 285-300.
93.Chen, J. P., 1997. Batch and continuous adsorption of strontium by plant root tissues. Bioresource Technol. 60, 185-189.
94.Chen, K. C., Wu, J. Y., Huang, C. C., Liang, Y. M., Hwang, S. C., 2003. Decolorization of azo dye using PVA-immobilized microorganisms. J. Biotechnol. 101, 241-252.
95.Hannoun, B. J. M., Stephanopoulos, G., 1986. Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnol. Bioeng. 28, 829-835.
96.Korgel, B. A., Rotem, A., Monbouquette, H. G., 1992. Effective diffusivity of galactose in calcium alginate gels containing immobilized Zymomonas mobilis. Biotechnol. Prog. 8, 111-117.
97.Chang, J. S., Chou, C., Chen, S. Y., 2001. Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochem. 36, 757-763.
98.Chang, J. S., Kuo, T. S., 2000. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresource Technol. 75, 107-111.
99.Chang, J. S., Chou, C., Lin, Y. U., Lin, P. J., Ho, J. Y., Hu, T. L., 2001. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 35, 2841-2850.
100.Yeh, M. S., Chang, J. S., 2004. Bacterial decolorization of an azo dye with a natural isolate of Pseudomonas luteola and genetically modified Escherichia coli. J. Chem. Technol. Biotechnol. 79, 1354-1360.
101.Chen, J. P., Lin, W. S., 2002. Synthesis of geranyl acetate by esterification with lipase entrapped in hybrid sol-gel formed within nonwoven fabric. JAOCS 79, 309-314.
102.Chen, J. P., Lin, W. S., 2003. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme Microb. Technol. 32, 800-1.
103.Chen, J. P., Hwang, Y. N., 2003. Polyvinyl formal resin plates impregnated with lipase-entrapped sol-gel polymer for flavor ester synthesis. Enzyme Microb. Technol. 33, 513-519.
104.Lewandowski, G. A., Defilippi, L. J., 1998. Introduction to microbiological degradation of aqueous waste and its application using a fixed-film reactor. In: Biological treatment of hazardous wastes. New York: John Wiley & Sons, Inc., [Chapter 2].
105.Chen, B. Y., Chen, S. Y., Chang, J. S., 2005. Immobilized cell fixed-bed bioreactor for wastewater decolorization. Process Biochem. 40, 3434-3440.
106.Yin, C., Chia, S. M., Quek, C. H., Yu, H., Zhuo, R. X., Leong, K. W., Mao, H. Q., 2003. Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials 24, 1771-1780.
107.Geankoplis, C. J., 1993. Transport processes and unit operations. 3rd ed. Prentice Hall, Upper Saddle River, New Jersey.
108.Xu, S. W., Jiang, Z. Y., Lu, Y., Wu, H., Yuan, W. K., 2006. Preparation and catalytic properties of noval alginate-silica-dehydrogenase hybrid biocomposite beads. Ind. Eng. Chem. Res. 45, 511-517.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top