跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周慶展
研究生(外文):Chou Chin chan
論文名稱:以直覺模糊自動機概念化產品涉入
論文名稱(外文):Conceptualizing Product Involvement with Intuitionistic Fuzzy Automata
指導教授:陳亭羽陳亭羽引用關係
指導教授(外文):Chen Ting Yu
學位類別:碩士
校院名稱:長庚大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:148
中文關鍵詞:產品涉入直覺模糊集合模糊自動機
外文關鍵詞:Product involvementIntuitionistic fuzzy setsFuzzy automata
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
產品涉入至1986年發展至今已漸趨於完整。產品涉入理論的應用涉及市場區隔與行銷策略等。當我們欲調查個體其想法或看法時,我們會是用量表及尺度來測量與蒐集我們想要的資料。有時受測者在填答的過程中會對所選的答案感到不確定,而直覺模糊理論具有一種區間的概念,對於當受測者對答案所產生的不確定性可有效的解決。自動機是一種具有動態系統的數學模型。而自動機的運作模式是與個體產品涉入的運作模式是相似的,且二者本身內部皆具有一種狀態,可由此狀態轉換而產生結果。
此研究試著利用直覺模糊集合發展整合性產品涉入模型。並且探討何種產品涉入量表是最適合利用於直覺模糊自動機中。發展產品涉入之直覺模糊自動機的方法為,首先調查個體其產品涉入之前因與影響及其產品涉入本身,並利用這些實際資料來發展產品涉入之直覺模糊自動機。此外我們以隨機的方式產生出1000筆資料,利用此1000筆資料再由先前用實際資料所發展出來的產品涉入之直覺模糊自動機運作。我們將此利用兩種資料所得到的結果進行比對,以確定所發展出來的產品涉入之直覺模糊自動機具有一定程度的效果。此研究結果如下:
一、研究結果指出在四種產品涉入量表之中,最適合用在直覺模糊自動機的產品
涉入量表為Mittal and Lee所發展的因果模式量表。
二、研究發現可以利用產品涉入之直覺模糊自動機便可很簡單地預測或獲得有關產品涉入及其影響資訊。只需由個體獲得產品涉入的前因資料,並將其前因資料交由此產品涉入之直覺模糊自動機運作,便可得出想要的資料。
三、發展直覺模糊自動機的重要工具,但產品涉入之直覺模糊自動機中,探討合成(Composition)是比蘊含(Implication)來的更有意義。
四、研究中有利用模糊資料與直覺模糊資料藉由自動機所得到的兩套結果,而此兩套結果均顯示出兩種自動機模型所具有的預測能力是相似的。
Product involvement has been developed since 1986, and has been complete gradually. Application of product involvement theory involves issues of marketing such as market of segmentation, advertising appeals, media strategy, and so on. When we want to investigate individuals’ thoughts or opinion, it is the way to use inventory and scales to collect the data we need. Sometimes respondents will be uncertain to which answers that they should choice, IFS theory contains the concept of interval that could be used to solve problems when respondents have uncertainty in answering questions. Automata are mathematical model for a finite state machine with a dynamic system operating in discrete time. The operation of automata is similar to the operation of individuals’ product involvement, both of them do have the internal state to transform output state.
This research tried to utilize intuitionistic fuzzy automata to develop an integrated model of product involvement, and search for which one is the most suitable product involvement scale when we discuss product involvement with intuitionistic fuzzy automata. The method of development the intuitionistic fuzzy automata with product involvement is that we investigated individuals’ antecedents, consequences of product involvement and itself, and development the intuitionistic fuzzy automata with product involvement by those real data. We created 1000 value in random and development the model too. Compare those two results which are generated by the model to make sure that the model we develop by real datum is effective. This research obtained some results as follows:
The results show that the most suitable product involvement scale is Mittal and Lee’s Casual model among four product involvement scales when we discuss product involvement with IFS automata.
It is an easy way to predict or obtain individuals’ states of product involvement and consequnces. All you have to do is to obtain some antecedents datum of product involvement from individuals, and operate them by the model. The model will generate the information of product involvement that you need.
This study found that both of implication and composition are the most important tools to develop intuitionistic fuzzy automata, but it is more meaningful to discuss composition than implication in IFS automata with product involvement. The most suitable tool of composition is algebraic product and sum.
Compare the results of fuzzy automata and intuitionistic fuzzy automata, both of them show that the abilities of prediction are quite close in two automatom.
Contents
1. Introduction………………………………………………………………………………………………………………………………-1-
1.1 Research Background Motives…………………………………………………………………………………-1-
1.2 Research Objectives………………………………………………………………………………………………………-2-
2. LiteratureReview……………………………………………………………………………………………………………………-4-
2.1 The Basic Concept of Product Involvement and Relative
Literature………………………………………………………………………………………………………………………………-4-
2.2 The Measurements of Product Involvement…………………………………………………-6-
2.3 The Antecedents of Product Involvement……………………………………………………-7-
2.4 The Consequences of Product Involvement…………………………………………………-10-
2.5 Summary………………………………………………………………………………………………………………………………………-17-
3. Research Methodology…………………………………………………………………………………………………………-19-
3.1 Basic Concept of Fuzzy Set Theory…………………………………………………………………-19-
3.2 Intuitionistic Fuzzy Sets………………………………………………………………………………………-20-
3.3 Intuitionistic Fuzzy Automata……………………………………………………………………………-31-
3.4 Algorithm of Intuitionistic Fuzzy Automata…………………………………………-35-
3.5 Numerical Examples of Intuitionistic Fuzzy Automata…………………-37-
4. Research Design………………………………………………………………………………………………………………………-40-
4.1 Operational Measurement of Antecedents……………………………………………………-40-
4.2 Definition of Product Involvement…………………………………………………………………-43-
4.3 Operational Measurement of Consequences…………………………………………………-43-
4.4 Questionnaire Design……………………………………………………………………………………………………-49-
5. Data Analysis and Interpretation…………………………………………………………………………-51-
5.1 Data Collection…………………………………………………………………………………………………………………-51-
5.2 Description of Data………………………………………………………………………………………………………-52-
5.3 The Reliability of the Survey Instrument………………………………………………-53-
5.4 Correlation Analysis of Variables…………………………………………………………………-54-
5.5 IFS Correlation Analysis of Variables………………………………………………………-60-
5.6 Fuzzy Automata Data Analysis………………………………………………………………………………-66-
5.7 Intuitionistic Fuzzy Automata Data Analysis………………………………………-81-
6. Conclusions and Suggestions………………………………………………………………………………………-126-
6.1 Conclusions……………………………………………………………………………………………………………………………-126-
6.2 Suggestions for Further Research……………………………………………………………………-126-
REFERENCES………………………………………………………………………………………………………………………………………………-128-
APPENDIX……………………………………………………………………………………………………………………………………………………-133-
Appendix A -The Antecedents of Product Involvement……………………………………-133-
Appendix B-Product involvement…………………………………………………………………………………………-134-
Appendix C-The consequences of product involvement……………………………………-138-
Appendix D-Main questionnaire……………………………………………………………………………………………-141-
Ahluwalia, R.H., Unnava, H.R., and Burnkrant, R.E. (2000), “Consumer response to negative publicity: the moderating role of commitment,” Journal of Marketing Research 37(2), 203-214.
Andrea, R. (1997), “Linking organizational effectiveness, key success factors and
performance measures: an analytical framework,” Management Accounting
Research 8, 207-219.
Assael, H. (1981), Consumer Behavior, New York: Wadsworth.
Atanassov, K.T. (1986), “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems 20, 87–96.
Atanassov, K.T. (1989), “More on intuitionistic fuzzy sets,” Fuzzy Sets and Systems
33(1), 37-45.
Bandura, A. (1977), Social Learning Theory. New York: General Learning Press.
Benson, K. (2002), “Performing automatic target detection with evolvable finite state
automata,” Image and Vision Computing 20, 631-638.
Billard, E.A. (1996), “Evolutionary strategies of stochastic learning automata in the
prisoner’s dilemma,” Biosystems 39, 93-107.
Blanco, A., Delgado, M., and Pegalajar, M.C. (2001), “Fuzzy automaton induction using neural network,” International Journal of Approximate Reasoning 27, 1-26.
Bloch, P.H. (1981), “An exploration into the scaling of consumers’ involvement with a product class,” Advances in Consumer Research 6, 61-65.
Bustince, H., and Burillo, P. (1996), “Structures on intuitionistic fuzzy relations,” Fuzzy Sets and Systems 78(3), 293-303.
Churchill, G.A. (1979), “A paradigm for developing better measures of marketing constructs,” Journal of Marketing Research 16, 64-73.
Chiang, D.-A., and Lin, N.-P. (1999), “Correlation of fuzzy sets,” Fuzzy Sets and Systems 102, 221-226.
Chen, C.-N., and Ting, S.-C. (2002), “A study using the grey system theory to evaluate the importance of various service quality factors,” The International Journal of Quality and Reliability Management, 19(6), 838-861.
Corey, L.G. (1971), “People who claim to be opinion leaders: identifying their characteristics by self-report,” Journal of Marketing 35, 48-53.
Curilem, S.G., Barbosa, A.R., and Azevedo, F.M. (2006), “Intelligent tutoring systems: Formalization as automata and interface design using neural networks,” Computer and Education 4, 1-17.
Day, G.S. (1970), Buyer Attitudes and Brand Choice Behavior, New York: Free Press.
Dumitrescu, D. (1977), “A definition of informational energy in fuzzy sets theory,” Studia Univ. Babes-Bolyai Math. 22, 57-59.
Engel, J.F., Kollat, D.T., and Blackwell, R.D. (1982), Consumer Behavior 4th ed, Chicago: Dryden.
Gaines, B.R., and Kohout, L. (1976), “The logic of automata,” International Journal of General Systems 2(4), 191–208.
Gerstenkorn, T., and Manko, J. (1991), “Correlation of intuitionistic fuzzy sets,” Fuzzy Sets and Systems 44(1), 39-43.
Grantner, J., and Patyra, M. (1994), “Synthesis and analysis of fuzzy logic finite
state machine models,” in Prcoeding. 3rd IEEE Conference. Fuzzy System., Orlando, FL 1 , 205–210.
Howard, J., and Sheth, J.N. (1969), The Theory of Buyer Behavior, New York: John Wiley and Sons Inc.
Houston, M.J., and Rothschild, M.L. (1978), “Conceptual and methodological perspectives on involvement,” in Jain, S. (ed.), Research Frontiers in Marketing: Dialogues and Directions, Chicago: American Marketing Association, 184-187.
Hopcroft, J., and Ullman, J. (1979), Introduction to Automata Theory, Languages,
and Computation. Reading, MA: Addison-Wesley.
Hung, W.-L. (2001), “Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(4), 509-516.
Hsiao, S.-W. (1994), “Fuzzy set theory on car-color design,” Color Research and
Application 19(3), 202-213.
Jacoby, J. (1971), “A model of multi-brand loyalty,” Journal of Advertising Research 11, 25-31.
Keller, K.L. (2001), “Building customer-based brand equity,” Marketing Management 10(2), 14-19.
King, C.W., and Summers, J.O. (1970), “Overlap of opinion leadership across consumer product categories,” Journal of Marketing Research 5, 43-50.
Kim, K.J., and Cho, S.B. (2006), “Evolved neural networks based on cellular automata for sensory-motor controller,” Neurocomputing 69, 2193-2207.
Klir, G.J., and Yuan, B. (1995), Fuzzy Sets and Fuzzy Logic-Theory and Applications,
Prentice Hall.
Korgaonkar, P.K., and Moschis, G..P. (1982), “An experimental study of cognitive
dissonance, product involvement, expectations, performance and consumer
judgment of product performance,” Journal of Advertising 11(3), 32-44.
Krugman, H.E. (1965), “The impact of television advertisement: learning without
involvement,” Public Opinion Quarterly 29(3), 349-356.
Kumar D.S, Biswas R., and Ranjan, R.A. (2000), “Some operations on intuitionistc fuzzy sets,” Fuzzy Sets and Systems 114(3), 477-484.
Laurent, G.., and Kapferer, J.N. (1985), “Measuring consumer involvement profiles,” Journal of Advertising Research 22(1), 41-53.
Lyons, B., and Henderson, K. (2005), “Opinion leadership in a computer-mediated environment,” Journal of Consumer Behavior 4(5), 319-323
Mensch, S., and Lipp, H (1990), “Fuzzy specification of finite state machines,”
in EDAC. Proceedings of the European. Design Automation Conference 12(15), 622–626.
Mittal, B., and Lee, M.S. (1989), “A causal model of consumer involvement,”
Journal of Economic Psychology 10, 363-389.
Mordeson, J.N., and Malik, D.S. (2002), Fuzzy Automata and Languages: Theory and Applications, London: Chapman and Hall.
Munn, H.L. (1960), “Brand perception as related to age, income, and education,”
Journal of Marketing 24(3), 29-34.
Muncy, J.A., and Hunt, S.D. (1984), “Consumer involvement: definitional issues and research directions,” Advances in Consumer Research 11(1), 92-107.
Nunnally, J.C., and Berntein, I. (1994), Psychometric theory (3rd ed.), New York: McGraw-Hill Book Company.
Omlin, C.W., Thornber, K.K., and Giles, C.L. (1998), “Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks,” IEEE Transaction on Fuzzy Systems 6(1), 76-89.
Pallister, J.G., Wang, H.-C., and Foxall, G.R. (2007), “An application of the style/involvement model to financial services,” Technovation 27, 78-88
Pedrycz, W., and Li, Y. (2005), “Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids,” Fuzzy Sets and Systems 156, 68-92
Prascevic, Z., and Petrovic-Lazarevic, S. (1996), “Probabilistic-possibilistic approach to the optimal selection of a contractor,” Yugoslav Journal of Operational Research 6(1), 137-141.
Quester, P.G., and Smart, J. (1998), “The influence of consumption situation and
product involvement over consumers’ use of product attributer,” The Journal of Consumer Marketing 15(3), 220-238.
Quester, P., and Lim, A.L. (2003), “Product involvement/brand loyalty: is there a
link?,” The Journal of Product and Brand Management 12(1), 22-38.
Robertson,T.S., Zielinski, S., and Ward, J. (1985), Consumer Behavior, Illinois:Scott Foresman and Company.
Roger, F.B., Ian, N.L., and Martina, A.B. (1999), “Internal marketing and customer
driven wavefronts,” The Service Industries Journal 19(4), 49-67.
Santos, E., and Wee, W.G. (1968), “General formulation of sequential machines,” Information and Control 12, 5-10.
Sherif, M., and Cantril, H. (1947), The Psychology of Ego-Involvements, Social Attitudes and Identifications, New York: John Wiley and Sons Inc.
Solomon, M.R. (1999), Consumer Behavior 4th ed, New York: Prentice-Hall, Upper Saddle River.
Stangor C. (1998), Research Methods for Behavioural Sciences, New York: Houghton Mifflin Company.
Thomason, M., and Marinos, P. (1974), “Deterministic acceptors of regular fuzzy
languages,” IEEE Trans. Systems, Man, Cybernetics 4, 228–230.
Tyebjee, T.T. (1979), “Refinement of the involvement concept: an advertising planning point of view,” in Maloney, J.C., and Silverman, B. (eds.), Attitude Research Plays for High Stakes, Chicago: American Marketing Association, 94-111.
Vaughn, R. (1980), “How advertising works:a planning model revisited,” Journal of Advertising Research 26, 57-66.
Wang, E.J. (2002), “Outage costs and strategy for hi-tech industries: a fuzzy multiple goal approach,” The International Journal of Quality & Reliability Management 19(8), 1068-1087.
Weir, D. (1992), “Automata theory as relevant to linguistics”, in W. Bright, editor, Oxford International Encyclopaedia of Linguistics 1,145-146. Oxford University Press, Oxford, England.
Wu, S.-I., and Huang, S.-L. (2003), “An empirical study of the antecedents and consequences about consumer involvement degree toward coffee chain” WEB JOURNAL OF Chinese Management Review 6(4), 136-155.
Yang, W.-S. (2001), The Study of Relationships between the Involvement Levels and the Related Factors of Purchasing Decision of the Mobile Phone Consumers, master’s thesis of National Chiao Tung University.
Ying, M.-S. (2002), “A formal model of computing with words,” IEEE Transaction on Fuzzy Systems 10(5), 640-652.
Zaichkowsky, J.L. (1985), “Measuring the involvement construct,” Journal of Consumer Research 12(3), 341-352.
Zaichkowsky, J.L. (1986), “Conceptualizing involvement,” Journal of Advertising 15(2), 4-14.
Zaichkowsky, J.L. (1988), “Involvement and the price cue,” Advances in Consumer
Research 15(1), 323-327.
Zedeh, L.A. (1965), “Fuzzy sets,” Information and Control 8, 338-353.
Zedeh, L.A. (1971), “Fuzzy languages and their relation to human and machine
intelligence,” Electron. Res. Lab., Univ. California, Berkeley, Tech. Rep.
ERL-M302.
Zedeh, L.A. (1975), “Concept of a linguistic variable and its application to approximate reasoning, I, 11, 111,” Information Sciences 8, 199-249.
Zhao, G. (1988), Study of FCB model: general discussion of 「involvement」 and 「think/feel」as two dimensions, master’s thesis of Tamkang University.
Zhou, D., Ma, J., and Efraim, T. (2001), “Journal quality assessment: an integrated
subjective and objective approach,” IEEE Transactions on Engineering Management 48(4), 479-490.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top