跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭智宇
研究生(外文):C.Y.Cheng
論文名稱:矽基板高功率氮化鎵發光二極體之研究
論文名稱(外文):Study of GaN-Based Power-Chip Light Emitting Diode on Si substrate
指導教授:張本秀
指導教授(外文):P.H.Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:64
中文關鍵詞:高功率氮化鎵發光二極體矽基板接面溫度
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
高功率氮化鎵發光二極體(GaN-Based Power-Chip LED)在半導體照明及顯示器背光源方面具有極重要之應用價值。然而其元件散熱及發光效率方面的問題嚴重影響其應用及使用壽命。本論文利用矽基板較優於藍寶石基版之導熱特性,探討矽基板高功率大面積氮化鎵發光二極體之接面溫度(junction temperature)量測分析。我們藉由1.順向偏壓法(diode forward-voltage method)及2.波長偏移法(emission peakwavelength shift method)分析比較矽基板與藍寶石基板之發光二極體之接面溫度。我們同時利用不同的叉指狀電極設計來改善LED電流擁擠(current crowding)的現象使提高發光效率以及元件壽命。
我們同時比較同樣矽基板磊晶結構之三種不同電極架構之接面溫度(分別為3P3N, 4P3N, 4P4N),並且與相同多層量子井磊晶參數的藍寶石基板發光二極體之特性比較. 利用電流-電壓量測及電激發光光譜量測等方式,分析 power chip 之峰值波長與電流以及溫度之關係, 藉以分析電流對power chip接面溫度之影響. 由溫度與峰值波長關係圖結果顯示, 矽基版power chip之dominate wavelength隨溫度昇高紅移不明顯sapphire 基版隨溫度昇高之紅移明顯。由電流與峰值波長關係圖顯示, 矽基版power chip之dominate wavelength隨電流昇高紅移不明顯, sapphire 基版隨電流昇高先藍移再紅移之現象較明顯。由於氮化鎵多層量子井的特性,在變電流電激發光時,先藍移再紅移之,藍移主要是受能帶填滿效應與反史塔克效應影響, 電子濃度增加時造成其能隙會增大,所以電子電洞復合所產生之光子的能量會變大,波長變短,形成藍移。因此無法直接用紅移與溫度之間的關係反推當電流增加時接面溫度的大小。
由順向偏壓法(diode forward-voltage method)之線性關係分析比較矽基板與藍寶石基板之發光二極體之接面溫度。藉由 power chip 之順向偏壓與電流以及溫度之關係, 藉以分析電流對power chip接面溫度之影響. 結果顯示由於矽基板樣由於有較多之差排及缺陷影響品質的影響,導致整體發光效率低於藍寶石基板樣品。隨著電極總數目的增加(P+N),電流擁擠效應隨之上升,導致熱效應升高,接面溫度相對提高。在I < 350 mA的情況下,矽基板樣品對於散熱效果有較佳的表現,接面溫度相對較低。隨著電極數目的增加,接面溫度相對提高。而在發光效率的表現方面,隨著電極數目增加,由於有效發光面積相對的減少,矽基板樣品與藍寶石基板樣品的光強度皆隨之下降。
GaN-Based Power-Chip Light Emitter Diodes (LEDs) have revealed important potential for the application of solid lighting and flat–panel- display back light. However, the junction temperature is a critical parameter and affects internal efficiency, device reliability and maximum output power. In this thesis, High-Power and Large-Area GaN-Based LEDs on Si substrates have been studied. Si substrate benefits of better thermal conductivity than sapphire, being widely available as a high quality, large-diameter, low-cost substrate and extensive utilization in the semiconductor industry. In order to reduce the stress between the GaN and Si resulting from their lattice mismatch, two LT-AlN/HT-AlN(LT and HT, low temperature and High temperature) insertion layers are used as an intermediate layers.
In the thesis, the diode forward voltage, Vf, is employed to measure the junction temperature of GaN power chips on Si substrate. A same structure power chip on sapphire substrate was also fabricated for reference. We use three different designing structures of electrode , 3P3N, 4P3N and 4P4N, to improve the phenomenon of current crowding and to enhance the reliability and efficiency of LED devices. Characteristics of power chips were studied experimentally by pulse and DC modes current-voltage (I-V) and electron-luminance (EL) measurements at different temperatures.
Comparisons of the junction temperatures and light intensity caused by three different geometric structures of electrodes of power chips on Si and sapphire substrates were made in this work. Our experimental results show that the High-Power and Large-Area GaN-Based LEDs on Si substrates (with 40mil *40mil area) has lower junction temperature than sapphire substrate when applying current lower than 350 mA. For power chip on sapphire substrate with 3P3N electrodes patter has the lowest junction temperature and largest light output intensity. Further more, for power chip on Si substrate with 3P3N electrodes patter has the lowest junction temperature at 400 mA and largest light output intensity.
指導教授推薦書…………………………………………………………
口試委員會審定書………………………………………………………
授權書……………………………………………………………………
致謝…………………………………………………………………….iv
中文摘要………………………………………………………………..v
英文摘要………………………………………………………………vii
目錄…………………………………………………………………….ix
圖目錄…………………………………………………………………xii
表目錄…………………………………………………………………xv
第一章 序論……………………………………………………………1
1.1引言…………………………………………………………………1
1.2發光二極體發展歷史與近況………………………………………2
1.3研究動機與論文架構………………………………………………3
第二章 實驗理論………………………………………………………6
2.1發光二極體工作原理………………………………………………6
2.1.1直接能隙半導體…………………………………………………6
2.1.2發光機制…………………………………………………………8
2.2發光二極體電流分布模型…………………………………………9
2.3發光二極體電流侷限效應…………………………………………10
2.4溫度與材料能係的關係……………………………………………10
2.5接面溫度與操作電壓關係…………………………………………11
第三章 樣品與量測系統……………………………………………16
3.1樣品結構……………………………………………………………16
3.2量測儀器及架構……………………………………………………17
3.2.1電流-電壓量測架構……………………………………………19
3.2.2電機發光量測架構………………………………………………19
3.2.3LI量測架構………………………………………………………19
3.3穿遂式電子顯微鏡…………………………………………………20
3.4掃描式電子顯微鏡…………………………………………………21
第四章 量測結果分析與討論………………………………………22
4.1電流-電壓量測-順向偏壓法………………………………………23
4.2電激發光量測-波長偏移法………………………………………25
4.2.1變溫電激發光……………………………………………………25
4.2.2變電流變激發光…………………………………………………25
4.2.3波長偏移法………………………………………………………26
4.2.4注入電流與電激發光強度的變化………………………………27
4.3LI特性量測…………………………………………………………27
4.4量測結果分析………………………………………………………28
第五章 結論…………………………………………………………29
參考文獻………………………………………………………………62
[1] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-hetero structure blue-light-emitting”, Appl. Phys. Lett. 64, 1687(1994)
[2] S.Nakamura, M.Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue,green and yellow Light-Emitting Diodes with quantum well structures”, Jpn. J. Appl. Phys. 34, 797(1995)
[3] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, ” High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n)structures”, Appl. Phys. Lett. 71, 2154 (1997)
[4] T.Matsuoka, H.Okamoto, M. Nakao, H. Harima, and E. Kurimoto, ” Optical bandgap energy of wurtzite InN”, Appl. Phys.Lett. 81, 1246 (2002)
[5] H. Morkoc, “Nitride Semiconductors and Devices”, Springer-Verlag, Berlin, 1999
[6] S. Nakamura, T. Mukai, M. Senoh and N. Jwasa,” Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys.31,1258 (1992)
[7] Vaudo R P, Goepfert I D, Moustakas T D, et al. Characteristics of light-emitting diodes based on GaN p-n junctions grown by plasma-assisted molecular bean epitaxy [J]. J. Appl. Phys., 1996, 79(5): 2779-2983
[8] Nakamura S, Mukal T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994, 64(13): 1687-1689
[9] Lin Liang, Chen Zhizhong, Chen Ting, et al. Characteristics of the accelerated aging white LED [J]. Chin. J. Lumin., 2005, 26(5): 617-621
[10] Fang Huizhi, Lu Min, Chen Zhizhong, et al. Structural characterizetion of epitaxial lateral overgrowth GaN by MOCVD [J]. Chin J. Lumin., 2005, 26(6): 748-752
[11] G. B. Stringfellow, M. George Craford, “High Brightness Light-Emitting Diodes”, Semiconductors and Semimetal vol48, 3, 1997
[12] Han-Youl Ryu, Kyoung-HoHa, Jung-Hye Chae, Ok-Hyum Nam, and Yong-Jo Park,Appl. Phys. Lett. 87, 093506, (2005)
[13] Adams, E.N., Phys.Rev.107, 671, (1957)
[14] S. Murata and H.Nakada,J.App.Phys.Lett.Phys. 72 ,2514,(1992)
[15] Wright,A.F.and Neson,J.S., App.Phys.Lett. 66, 3051, (1995)
[16] Y. Gu and N. Narendran, Proc. SPICE 5187 , 107 ,(2004)
[17] Muto,T and Oyama,S.,Prog.Theor.Phys.,5,833(1950)
[18] Möglich, R and Rompe, R., Z. Phys. 119(1942) 472
[19] Bardeen, J. and Shockley, W., Phys. Rev.80 (1950) 72
[20] Fan, H. Y. Phys. Rev., 78 (1950) 808
[21] Fan, H. Y. Phys. Rev., 82 (1951) 900
[22] Muto, T and Oyama, S., Prog. Theor. Phys., 5 (1950) 833
[23] Antoncik, E., Czech, J. Phys., 5 (1955) 449
[24] Vasileff, H. D., Phys. Rev. 105 (1957) 441
[25] Adams, E. N., Phys. Rev. 107 (1957) 671
[26]Y. Xi and E. F. Schubert Appl. Phys. Lett. Vol. 85, No. 12 (2004)
[27]Yangang XI, Thomas GESSMANN, Jingqun XI, Jong Kyu KIM, Jay M. SHAH, E. Fred SCHUBERT, Arthur J. FISCHER, Mary H. CRAWFORD, Katherine H. A. BOGART and Andrew A. ALLERMAN Jpn. J. Appl. Phys. Vol. 44, No. 10, pp. 7260–7266 (2005)
[28] J. Millman and C. Halkias, Integrated Electronics (McGraw–Hill, New York, 1972)
[29] H.Y. Ryu, K.H. Ha, J.H. Chae, O.H. Nam, and Y.J. Park, Appl. Phys. Lett. 87, 093506 (2005)
[30] Y. Xi and E.F. Schubert, Appl. Phys. Lett. 85, 2163 (2004)
[31] Y. Xi, J.-Q. Xi, T. Gessmann, J.M. Shah, J.K. Kim, E.F. Schubert, A.J. Fischer, M.H. Crawford, K.H.A. Bogart, and A.A. Allerman, Appl. Phys. Lett. 86, 031907 (2005)
[32] 楊延鍇, 磷化鋁鎵銦發光二極體接面溫度研究, 長庚大學光電工程研究所碩士論文(2006)
[33] 張欣怡, 功率覆晶式發光二極體之結合方式與抗靜電子基板之研究, 長庚大學光電工程研究所碩論文(2006)
[34] 黃恆毅, 氮化銦鎵/氮化鎵多重量子井的光學量測, 長庚大學光電工程研究所碩論文(2004)
[35] 高一龍, 在矽基板上成長氮化合物之材分析, 長庚大學光電工程研究所碩論文(2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top