跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏全
研究生(外文):CHEN Po-chuan
論文名稱:化合物基板氧化釓金氧半電容與離子感測元件之研究
論文名稱(外文):On The Fabrication Of GaAs-Gd2O3 MOS Capacitor And Its EIS Divice Application
指導教授:張連璧張連璧引用關係
指導教授(外文):Liann-Be Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:76
中文關鍵詞:砷化鎵氧化釓
外文關鍵詞:GaAsGd2O3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於半導體產業的蓬勃發展,砷化鎵(GaAs)半導體的應用日漸重要,整體而言,砷化鎵較矽元件除了電子遷移速度高,在高頻使用的雜訊低,適合用於通訊之外,另外也具備抗輻射性,不易產生信號
錯誤情況,故產品穩定度高,適用於整合型積體電路。
對於砷化鎵MOSFET元件而言,缺乏可靠的閘氧化層一直是主要
的致命傷,而本研究旨在製作利用稀土金屬氧化物(Gd2O3),作為閘極介電質之砷化鎵(GaAs)基板金氧半電容元件並研究其生長特性與相關之電性;最後更進一步將其做為氫離子感測元件以及分析其特性。
我們在製程過程中發現基板中的元素Ga會與Gd2O3產生互相擴散的現象,而Gd2O3也容易與空氣中的水器結合造成穩定度的下降。為了解決這些問題,其中嘗試了製作不同的複合氧化層結構,而從測試結果中可以證實這樣的結構,可以有效的抑制此一問題,無論是在金氧半電容C-V特性與氫離子感測元件特性皆能有效提升。
The semiconductor GaAs device fabrication become critical due to the requirement for global communication industrial growth. Enhancement mode-GaAs MOSFETs have a lot advantages over other GaAs based depletion mode FETs such as MESFET. However, the issue of GaAs MOSFET is lack of reliable gate oxide layer.
In this thesis, we fabricate GaAs Metal Oxide Semiconductor (MOS) capacitor and Extension Ion Sensitive Field Effective Transistor (EISFET) by using of rear-earth oxide as the gate dielectric. The correspondent device characteristics are analyzied. On the Gd2O3 deposition, an E-gun evaporator is used to evaporate metal Gd films with an ambient of oxygen.
It is found that deposited Gd2O3 films are not only intermixing with the substrate element Ga at the interface but also contaiminated by H2O molecules on the grown surface. In order to solve this interdiffusion problem, different structures are proposed. From experimentation result, we can proven that interdiffusion problem is solved and the characteristics of both MOS and EIS devices are enhanced.
第一章 導論...................................................................................................1
1-1 前言.........................................................................................1
1-2 研究動機.................................................................................2
第二章 MIS與EIS結構理論..........................................................................6
2-1 MIS結構.....................................................................................6
2-1-1 MIS結構理論.....................................................................6
2-1-2 介電效應.........................................................................11
2-1-3 氧化層崩潰機制.............................................................12
2-1-4 氧化層缺陷.....................................................................15
2-1-5 氧化層電荷對元件的影響.............................................18
2-1-6 氧化層的電流傳導機制.................................................20
2-1-6-1 直接穿隧.................................................................21
2-1-6-2 F-N穿隧...................................................................22
2-1-6-3 Poole-Frenkel發射................................................25
2-2 EIS ( Extensiongate Ion Senstive ) 結構系統.........................27
2-2-1 EIS結構...........................................................................27
2-2-2 吸附鍵結模型(Site-binding model)...........................32
第三章 實驗與量測.....................................................................................36
3-1 MIS製程與量測.......................................................................37
3-1-1 MIS製程步驟...................................................................37
3-1-2氧化物組成分析...............................................................39
3-1-2-1 XPS量測..................................................................39
3-1-2-2 XPS原理..................................................................40
3-1-2-3 C-V量測...................................................................44
3-1-2-4 I-V量測....................................................................45
3-2 EIS製程與量測.......................................................................45
3-2-1製程步驟..........................................................................45
3-2-2 C-V量測..........................................................................46
3-2-3 靈敏度( Sensitivity ).......................................................47
第四章 實驗結果與討論.............................................................................48
4-1 XPS...........................................................................................48
4-1-1 分析Ga元素.....................................................................49
4-1-2分析O元素......................................................................50
4-1-3分析Gd元素....................................................................51
4-2 MIS...........................................................................................52
4-2-1 改變不同頻率對C-V曲線的影響..................................53
4-2-2 遲滯現象(△V )..............................................................54
4-2-3 不同POA溫度的影響.....................................................56
4-2-3-1 C-V量測...................................................................56
4-2-3-2 I-V量測...................................................................57
4-3 EIS............................................................................................59
4-3-1 不同結構之C-V量測......................................................59
4-3-2 不同結構之感測靈敏度(Sensitivity) .............................61
4-3-3 相同結構不同退火溫度之C-V量測..............................64
4-3-4 不同結構之感測靈敏度(Sensitivity) ............................67
4-4 不同基板之MIS結構..............................................................70
第五章 結論.................................................................................................72
參考文獻.......................................................................................................74
【1】R. Williams, Modern GaAs Processing Methods, ch. 1. Boston London: Artech House, 1990.
【2】 M. Z. Lai and L. B. Chang, J. Appl. Phys., 72 (4), 15 August 1992
【3】 Gwo-Cherng Jiang, Liann-Be Chang, Gwo-Hsiung Chang,
Luke Su Lu, Journal of Crystal Growth 152 (1995) 127-134
【4】 H. T. Wang, S.T.Chou, L. B.Chang, T. W. Wang, and H. C. Tang, Appl. Phys. Lett. 70 (19), 12 May 1997
【5】 B. Bayraktaroglu, E. Kohn, and H. Hartnagle, Electron. Lett., 12
(2):53, 1976.
【6】 T. Mimura et al., IEEE Trans. Electron. Devices, 25:573,1978
【7】 M. Passlack, M. Hong, J. P. Mannaerts, J. R. Kwo, and L. W. Tu,
〝Recombination velocity at oxide-GaAs interfaces fabricated by
in situ molecular beam epitaxy〞, Appl. Phys. Lett. 68 (25), 17 June 1996, p.3605~3607
【8】 M. Passlack, M. Hong, R. L. Opila, J. P. Mannaerts, J. R. Kwo,
〝GaAs surface passivation using in-situ oxide 81 deposition 〞
Applied Surface Science 104/105 (1996) 441-447
【9】 M. Hong, F. Ren, W. S. Hobson, J. M. Kuo, J. Kwo, J. P.
Mannaerts, J. R. Lothian, M. A. Marcus, C. T. Liu, A. M. Sergent,
T. S. Lay, and
Y. K. Chen, 〝Growth of Ga2O3 (Gd2O3) Using Molecular
Beam Epitaxy Technique-Key to First Demonstration of GaAs
MOSFETs〞
【10】 M. Passlack, M. Hong, and J. P. Mannaerts, 〝Quasistatic and
high frequency capacitance-voltage characterization of
Ga2O3–GaAs structures fabricated by in situ molecular beam
epitaxy〞, Appl. Phys. Lett. 68 (8), 19 February 1996
【11】 S. M. Sze, Physics of Semiconductor Devices, Wiley & Sons Inc.,
1981.
【12】 R. F. Pierret, Semiconductor Device Fundamentals, Addison
Wesley,1996.
【13】 G. Burns, 〝Solid state physics〞, Prentice-Hall, 1957
【14】 W. E. Dahlke, and S. M. Sze, 〝Tunneling in metal-oxide-silicon
structures〞, Solid-state Electronics, 1967, Vol. 10, p. 865~873
【15】 莊達人, 〝VLSI 製造技術〞,中華民國八十九年八月三十日
四版七刷
【16】 Yuan Taur, Tak H. Ning, 〝Fundamentals of Modern VLSI Devices〞, First published 1998, Reprinted 1999, 2000, p.82~86
【17】 F. Crupi, R. Degraeve, G. Groeseneken, T. Nigam, H. E. Maes, 〝On the properties of gate and substrate current after soft
breakdown in ultrathin oxide layers〞, IEEE Trans ED 1998,
45(11): 2329
【18】 A. Schenk and G. Heiser, 〝Modeling and Simulation of
Tunneling through Ultra-thin Gate Dielectrics〞, J. Appl. Phys. ,
Vol. 81, No. 12, p. 7900, 1997
【19】 R. H. Flower, L. Nordheim, Proc. R. Soc. London, Ser. A119,
p. 173 , 1928
【20】 J. G. Simmons,〝Generalized formula for the electric tunneling
effect between silicon electrodes separated by a thin insulating
film〞, J. Appl. Phys, Vol. 34, No. 6, June 1963
【21】 C. D. Fung, P. W. Cheung and W. H. Ko, “A generalized theory
of an electrolyte-insulator-semiconductor field-effect transistor”,
IEEE Trans. Electron Devices, vol. ED-33, NO.1, (1986), 8-18.
【22】 D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl,
“Ion-sensing devices with silicon nitride and borosilicate glass
insulators”, IEEE Trans. Electron Devices, vol. ED-34 (1987)
1700-1707.
【23】 D.E. Yates, S. Levine, and T.W. Healy, “Site-binding model of
the electrical double layer at the Ooide/water interface”, J. Chen.
Faraday I, vol.70, (1974.) 1807-1818.
【24】 Willian M. Siu and Richard S. C. Cobbold,IEEE Transactions On
Electron Devices, Vol. ED-26, NO. 11, November 1979
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top