跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪揆一
研究生(外文):HUNG-KUEI-YI
論文名稱:突變第三型運動失調質在第三型脊髓小腦性運動失調症基因轉殖老鼠中藉提升Bax及抑制Bcl-xL表現引發橋腦及黑質神經細胞凋亡
論文名稱(外文):Mutant ataxin-3 induces apoptotic death of pontine and substantia nigra neurons of SCA3 transgenic mice by upregulating Bax and downregulating Bcl-xL
指導教授:王鴻利
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:49
中文關鍵詞:第三型運動失調質第三型脊髓小腦性運動失調症基因轉殖老鼠細胞凋亡
外文關鍵詞:ataxin-3Spinocerebellar ataxia type 3transgenic miceapoptosisSCA3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第三型脊髓小腦性運動失調症(Spinocerebellar ataxia type 3;SCA3)或麥克多喬瑟夫疾病(Machado-Joseph disease)是第三型運動失調質(ataxin-3)之基因突變所導致的遺傳型顯性神經病變,CAG核酸序列之增長進而增加第三型運動失調質內麩酸胺 ( glutamine)數目是引起此疾病的突變模式。正常第三型運動失調質在C-terminus含有12- 41個麩酸胺,引起第三型脊髓小腦性運動失調症的第三型運動失調質在C-terminus卻含有62- 84個麩酸胺。最近我們利用大白鼠之小腦(cerebellum)、紋狀體(striatum)及黑質(substantia nigra)神經核的培養神經元(cultured neurons)探討突變多麩酸胺第三型運動失調質引起腦部神經元死亡的分子機轉,發現突變多麩酸胺第三型運動失調質經由增加Bax表現及抑制Bcl-xL表現,進而活化由粒線體主導之凋亡蛋白酵素(caspase)路徑引起培養神經元的細胞凋亡(apoptosis)。
雖然離體細胞模式(in vitro cellular model)被廣泛地用於研究腦部疾病之病理機轉,但仍需要進一步以活體動物實驗(in vivo animal model)證實由培養神經元得到的重要發現。因此我們已成功地培養表現突變多麩酸胺 性第三型運動失調質的SCA3基因轉殖鼠,我們在本實驗中即是要利用這些基因轉殖鼠進行研究,探討突變多麩酸胺第三型運動失調質是否在活體動物也以相同的分子機轉引起腦部神經元的細胞凋亡。
依據以往對SCA3病患的研究,腦部中的橋腦核(pontine nucleus)及黑質(substantia nigra)神經核是兩個主要神經退化的區域,也因此我們的實驗主要針對此兩區域進行研究。首先利用西方碘墨法(Western blot),結果發現在SCA3基因轉殖鼠的小腦及腦幹有突變多麩酸胺第三型運動失調質蛋白的表現,而正常非基因轉殖鼠則無法偵測到,另外針對正常老鼠以及SCA3基因轉殖鼠進行一系列的運動功能測試,包括:滾輪測試(Rotarod test)、足跡分析法(Footprint analysis)、運動活性測定(Locomotor activity)、翻正反射(Righting reflex)等等,結果顯示正常老鼠與SCA3基因轉殖鼠有顯著的差異,SCA3基因轉殖鼠不僅在體重上的增加明顯減少,運動功能上的障礙亦極為明顯。另外利用蘇木紫及伊紅染色(H &E staining)來看神經細胞死亡的狀態,跟正常老鼠比較起來,在SCA3基因轉殖鼠的橋腦核及黑質神經核有顯著的細胞死亡現像。而原位末端標記染色(TUNEL staining)顯示突變多麩酸胺第三型運動失調質會使得SCA3基因轉殖鼠的橋腦核及黑質神經核之細胞進行細胞凋亡。
既然神經細胞的死亡是藉由細胞凋亡的形式進行,其中的機轉是我們想探討的,利用西方碘墨法,結果顯示,在SCA3基因轉殖鼠中,包含有橋腦核和黑質神經核的腦幹部位,有活化caspase-3和caspase-9蛋白的表現,而在橋腦和黑質的腦組織切片中,免疫組織染色(Immunohistochemical staining)的結果亦顯示,只有在SCA3基因轉殖鼠中才有活化caspase-3和caspase-9蛋白的表現,正常非基因轉殖鼠則缺乏。這些發現顯示突變多麩酸胺第三型運動失調質很可能是經活化粒線體路徑引起細胞凋亡。
Bcl-2家族蛋白中包含Bax和Bcl-xL,此兩者是調節粒線體細胞凋亡路徑中非常重要的蛋白,利用西方碘墨法以及RT-PCR技術,結果顯示,相似於離體細胞模式,無論在蛋白或mRNA層次,於SCA3基因轉殖鼠中包含橋腦核和黑質神經核的腦幹部位,突變多麩酸胺第三型運動失調質明顯增加了Bax表現及抑制Bcl-xL的表現。
符合以往對SCA3病患的研究,我們利用SCA3基因轉殖鼠所得到的結果亦顯示,神經細胞死亡的主要區域在橋腦核和黑質神經核。綜而言之,我們的研究結果顯示,在表現突變多麩酸胺第三型運動失調質的SCA3基因轉殖鼠中,引起橋腦核及黑質神經元細胞凋亡的分子機轉很有可能是藉由提升Bax的表現以及抑制Bcl-xL的表現,進而經由粒線體路徑引起caspase的活化造成神經細胞的凋亡。藉由本實驗,我們進一步瞭解第三型脊隨小腦性運動失調症的致病機轉並可能被用於發展治療第三型脊隨小腦性運動失調症的方法。
Spinocerebellar ataxia type 3 (SCA3) or Machado-Joseph disease is an inherited autosomal dominant neurodegenerative disorder caused by abnormal expansion of CAG repeats coding for polyglutamine tract within a protein called ataxin-3. Normally, ataxin-3 contains 12- 41 glutamines near the C-terminus, and the polyglutamine tract expands to 62-84 glutamines in disease-causing mutant ataxin-3. Recently, we’ve studied the molecular mechanism underlying polyglutamine ataxin-3-induced neurodegeneration with aid of primary neuronal cultures of cerebellum, striatum and substantia nigra. The study demonstrated that mutant polyglutamine ataxin-3-Q79 activated mitochondrial apoptotic pathway and induced neuronal death by upregulating Bax expression and downregulating Bcl-xL expression.
Although in vitro cellular model has been widely used to study pathogenic mechanisms of neurological disorders, important findings observed from in vitro cellular model have to be corroborated by in vivo animal model. Thus we have generated transgenic mice expressing polyglutamine-expanded ataxin-3-Q79. In the present study, SCA3 transgenic mice were used to investigate molecular mechanism by which mutant ataxin-3-Q79-induces apoptotic neuronal death in vivo.
Previous neuropathological studies using SCA3 human brain, prominent neuronal death was found in the pontine nucleus and substantia nigra. Thus our study was mainly focus in the two major degenerative regions of SCA3 brain. Western blot analysis indicated that mutant ataxin-3-Q79HA was expressed in the cerebellum and brainstem of ataxin-3-Q79HA transgenic mouse. Ataxin-3-Q79HA was absent in the brain of control non-transgenic mouse. Transgenic mice expressing ataxin-3-Q22 or ataxin-3-Q79 and control non-transgenic mice were assessed with different behavioral tests, which include rotarod test、footprint analysis、locomotor activity and righting reflex. Behavioral tests indicated that ataxin-3-Q79 transgenic mice exhibited weight loss and several symptoms of motor dysfunction. The findings clearly indicate that ataxin-3-Q79HA transgenic mice exhibit neurological phenotypes of SCA3.
H &E staining was performed to visualize neuronal loss in the brain of ataxin-3-Q79HA transgenic mice. Compared to wild-type non-transgenic mice, a significant decrease in the number of neurons was found in the pontine nucleus and substantia nigra neurons of ataxin-3-Q79 transgenic mice. The result of TUNEL staining indicate that polyglutamine-expanded ataxin-3-Q79 causes apoptotic death of pontine and substantia nigra neurons in SCA3 transgenic mice.
Although apoptotic neuronal death is involved in SCA3, the molecular mechanism of polyglutamine-expanded ataxin-3-Q79 induce apoptotic cell death must to be further study. Immunoblotting assay was performed to visualize the formation of active caspase-3 or caspase-9 in the brainstem region containing pontine nucleus and substantia nigra of ataxin-3-Q79 transgenic mice. Cleaved active caspase-3 and active caspase-9 were present in the brainstem of ataxin-3-Q79 transgenic mice but were not found in the brainstem extract of wild-type mice. The data of immunohistochemical staining show that active caspase-3 and active caspase-9 were found in pontine and substantia nigra neurons of SCA3 transgenic mice but were not present in the neurons of wild-type mice. These findings suggest that in the brainstem of ataxin-3-Q79 transgenic mice, mutant ataxin-3-Q79 cause apoptotic neuronal death through mitochondrial apoptotic pathway.
Bcl-2 family of proteins, including Bax and Bcl-xL, are key regulators of mitochondrial apoptotic pathway in the nervous system. The results of western blot analysis and RT-PCR assay provide the evidence that similar to results observed from in vitro cellular model of SCA3, mutant ataxin-3-Q79 also induces apoptotic neuronal death by upregulating Bax expression and downregulating Bcl-xL expression in vivo.
In summary, in accordance with previous neuropathological studies using SCA3 human brain, our histological analysis indicates that in the brain of ataxin-3-Q79 transgenic mice, prominent neuronal death was found in the pontine nucleus and substantia nigra. Our results suggest that polyglutamine-expanded ataxin-3-Q79 activates mitochondrial apoptotic pathway and induces neuronal death by upregulating Bax expression and downregulating Bcl-xL expression in the pontine nucleus and substantia nigra of ataxin-3-Q79 transgenic mice. The results presented here should shed a light on the pathogenic mechanism of SCA3 and lead to the possible therapeutic strategies of SCA3.
CONTENTS
Abstract (Chinese) i
Abstract (English) iv
Abbreviations vii
Contents viii
I. Introduction 1
II. Specific aims 8
III. Materials and methods 9
3.1 Generation of transgenic mice 9
3.2 Behavioral tests 10
3.3 Western blot analysis 11
3.4 Real-time quantitative RT-PCR assay 12
3.5 Immunohistochemical staining 14
3.6 TUNEL staining 15
3.7 Statistics 15
IV. Results 16
4.1 Generation of transgenic mice expressing human
disease-causing ataxin-3 16
4.2 Transgene expression 17
4.3 Ataxin-3-Q79HA transgenic mice exhibit various ataxic
symptoms of motor dysfunction 18
4.4 Neuropathological analysis of ataxin-3-Q79HA
transgenic mice 19
4.5 Polyglutamine-expanded ataxin-3-Q79 causes apoptotic
death of pontine and substantia nigra neurons in vivo 20
4.6 Polyglutamine-expanded ataxin-3-Q79 upregulates
Bax and downregulates Bcl-xL expression in vivo 23
V. Disscussion 25
VI. References 32
VII. Figures 40
VI. REFERENCE
Abel A, Walcott J, Woods J, Duda J, Merry DE. , 2001. Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum Mol Genet. 10, 107~116.
Adams JM. , 2003. Ways of dying: multiple pathways to apoptosis. Genes & Development. 17, 2481~2495.
Beal, M.F. , Ferrante, R.J., 2004. Experimental therapeutics in transgenic mouse model of Huntington’s disease. Nature Rev. Neurosci. 5, 373~384.
Borchelt DR, Davis J, Fischer M, Lee MK, Slunt HH, Ratovitsky T, Regard J, Copeland NG, Jenkins NA, Sisodia SS, Price DL., 1996. A vector for expressing foreign genes in the brains of hearts of transgenic mice. Genet. Anal. 13, 159~163.
Cao, G. , Pei, W., Ge, G., Liang, Q., Luo, Y., Sharp, F.R., Lu, A., Ran, R., Graham, S., Chen, J., 2002. In Vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423~5431.
Choo, Y.S., Johnson, G.V.W., MacDonald, M., Detloff, P.J., Lesort, M. , 2004. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome-c release. Human Mol.Genet. 13, 1407~1420.
Chou AH, Yeh TH, Kuo YL, Kao YC, Jou MJ, Hsu CY, Tsai SR, Kakizuka A, Wang HL.,2006. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis. 21(2), 333~ 45.Epub 2005 Aug19.
Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, Matilla A, Zoghbi HY, Orr HT .,1997. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17, 7385~7395.
Danial, N.N., Korsmeyer, S.J. , 2004. Cell death: Critical control points. Cell. 116, 205~219.
Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A, Lyon-Caen O, Julien J, Serdaru M, Penet C, Agid Y, Brice A., 1996. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann. Neurol. 39, 490~499.
Everett, C.M., Wood, N.W., 2004. Trinucleotide repeats and neurodegenerative disease. Brain. 127, 2385~2405.
Garden GA, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE, Smith AC, Martinez RA, Fine GC, Grote SK, Ware CB, Einum DD, Morrison RS, Ptacek LJ, Sopher BL, La Spada AR.,2002. Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice.J Neurosci. 22, 4897~4905.
Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben-Haiem L, Jenkins NA, Copeland NG, Kakizuka A, Sharp AH, Ross CA, Mouton PR, Colomer V.,2004. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration.J Neurosci. 24, 10266~79.
Graham, S.H., Chen, J., 2001. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 99~109.
Green, D.R., Kroemer, G.., 2004. The pathophysiology of mitochondrial cell death. Science. 305, 626~629.
Guegan, C., Vila, M., Rosoklija, G.., Hays, A.P., Przedborski, S., 2001. Recruitment of the mitochondrial-dependent pathway in amyotrophic lateral sclerosis. J. Neurosci. 21, 6569~6576.
Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S., Kakizuka, A., 1996.Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196~202.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A.,1994. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221~228.
Kobayashi T and Kakizuka A., 2003. Molecular analysis of Machado-Joseph disease. Cytogenet Genome Res. 100, 261~275.
Li, F., Macfarlan, T., Pittman, R.N., Chakravarti, D. , 2002. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Cheml. 277, 45004~ 45012.
Lipinski, M.L., Yuan, J., 2004. Mechanisms of cell death in polyglutamine expansion diseases. Current Opinion in Pharmacol. 4, 85~90.
Luthi-Carter R, Strand A, Hanson SA, Kooperberg C, Schilling G, La Spada AR, Merry De, Young AB, Ross CA, Borchelt DR, Olson JM .,2002b. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington’s mouse models reveal context-independent effects. Hum. Mol. Genet. 11, 1927~1937.
Michalik, A., Van Broeckhoven, C., 2003. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum. Mol. Genet. 12, R173~R186.
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I.,2001. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein.Hum Mol Genet. 10, 1441~1448.
Nijhawan D, Honarpour N, Wang X., 2000. Apoptosis in neural development and disease. Ann. Rev. Neurosci. 23, 73~87.
Okazawa H. ,2003. Polyglutamine diseases: a transcription disorder? Cell. Mol. Life Sci. 60, 1427~1439.
Ona VO, Li MW, Vonsattel JPG, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ,Stieg PE Yuan JY, Penney JB, Young AB, Cha JHJ, Friedlander RM. ,1999. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature. 399, 263~267.
Paradis, E., Douillard, H., Koutroumanis, M., Goodyer, C., LeBlanc, A., 1996. Amyloid peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates Bax expression in human neurons. J. Neurosci. 16, 7533~7539.
Parsadanian, A.S., Cheng, Y., Keller-Peck, C.R., Holtzman, D.M., Snider, W.D., 1998. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J. Neurosci. 18, 1009~1019.
Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN ., 1997a. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453~ 462.
Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN., 1997b. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 19, 333~344.
Perez, M.K., Paulson, H.L., Pittman, R.N., 1999. Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix. Hum. Mol. Genet. 8, 2377~2385.
Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whetsell Jr WO, Millerr G, Tagle DA., 1998. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutate full-length HD cDNA. Nature Genet. 20, 198~202.
Rogers DC, Fisher EMC, Brown SDM, Peters J, Hunter A J, Martin JE.,1997. Behavioral and functional analysis of mouse phenotypes: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mammalian Genome. 8, 711~713.
Rosenberg RN., 1992. Machado-Joseph disease: An autosomal dominant system degeneration. Mov. Dis. 3, 193~203.
Ross C. A., 2002. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron. 35, 819~822.
Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan JY. , 1999.Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron. 22, 623~ 633.
Saudou F, Finkbeiner S, Devys D, Greenberg ME., 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell. 95, 55~ 66.
Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR., 1999. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet. 8, 397~ 407.
Sugars, K.L., Rubinsztein, D.C., 2003. Transcriptional abnormalities in Huntington’s disease. Trends in Genet. 19, 233~238.
Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, Yoshida M, Tsuji S, Mizuno Y and Nishizawa M., 1994. A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology. 44, 1302~1308.
Tait D, Riccio M, Sittler A, Scherzinger E, Santi S, Ognibene A, Maraldi NM, Lehrach H, Wanker, EE. , 1998. Ataxin-3 is transported into the nucleus and associates with the nuclear matrix. Hum. Molec. Genet. 7, 991~ 997.
Tsai, H.F., Tsai, H. J., Mingli Hsieh, M.L., 2004. Full-length expanded ataxin-3 enhances mitochondrial-mediated cell death and decreases Bcl-2 expression in human neuroblastoma cells. Biochem. Biophys. Res. Com. 324, 1274~1282.
Wang GH, Mitsui K, Kotliarova S, Yamashita A, Nagao Y, Tokuhiro S, Iwatsubo T, Kanazawa I, Nukina N., 1999. Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. NeuroReport. 10, 2435~2438.
Wang HL, He CY, Chou AH, Yeh TH, Chen YL, Li AH. , 2006. Polyglutamine-expanded ataxin-7 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons. Cell Signal. [Epub ahead of print]
Wang, X., Zhu, S., Drozda, M., Zhang, W., Stavrovskaya, I.G., Cattaneo, E., Ferrante, R.J., Kristal, B.S., Friedlander, R.M., 2003. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc. Natl. Acad. Sci. USA. 100, 10483~10487.
Xiang, H., Kinoshita, Y., Knudson, C.M., Korsmeyer, S.J., Schwartzkroin, P.A., Morrison, R.S., 1998. Bax involvement in p53-mediated neuronal cell death. J. Neurosci. 18, 1363~1373.
Yeh, T.H., Hwang, H.M., Chen, J.J., Wu, T., Li, A., Wang, H.L. , 2005. Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiology of Disease. 18, 476~ 483.
Yoshizawa, T., Yamagishi, Y., Koseki, N., Goto, J., Yoshida, H., Shibasaki, F., Shoji, S., Kanazawa, I. , 2000. Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Hum. Mol. Genet. 9, 69~78.
Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ.,2003.Mutant Huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J. Neurosci. 23, 2193~2202.
Zoghbi HY, Botas J., 2002. Mouse and fly models of neurodegeneration. Trends in Genet. 18, 463~471.
Zoghbi H, Y, Orr H. T., 2000. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 213~247.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張志維:〈白蛇╱舌傳:變態的情慾語言(雛形版)〉,收錄於《中外文學》,第二十六卷,第十二期,1998年05月,頁31-46。
2. 賴芳伶:〈〈白娘子永鎮雷峰塔〉析論〉,收錄於《興大中文學報第十二期》(台中:中興大學中文系,1999),頁43-58。
3. 林景蘇:〈白蛇傳的階級意識與象徵〉,收錄於《文藻學報》,第十期,1996年,頁1-10。
4. 林景蘇:〈白蛇傳的階級意識與象徵〉,收錄於《文藻學報》,第十期,1996年,頁1-10。
5. 白崇珠:〈白蛇傳之內在衝突與象徵〉,收錄於《古典文學第五集》,中國古典文學研究會主編,台北市:台灣學生,1983年,頁187-210。
6. 白崇珠:〈白蛇傳之內在衝突與象徵〉,收錄於《古典文學第五集》,中國古典文學研究會主編,台北市:台灣學生,1983年,頁187-210。
7. 顏元叔:〈「白蛇傳」與「蕾米亞」—一個比較文學的課題〉,《幼獅文藝》32卷,1期,1970年,頁86-93。
8. 顏元叔:〈「白蛇傳」與「蕾米亞」—一個比較文學的課題〉,《幼獅文藝》32卷,1期,1970年,頁86-93。
9. 羅麗容:〈中國「悲劇理論研究」之回顧與前瞻〉,收錄於《古典文學》,第十三集,頁289-321。
10. 羅麗容:〈中國「悲劇理論研究」之回顧與前瞻〉,收錄於《古典文學》,第十三集,頁289-321。
11. 賴芳伶:〈〈白娘子永鎮雷峰塔〉析論〉,收錄於《興大中文學報第十二期》(台中:中興大學中文系,1999),頁43-58。
12. 潘少瑜:〈雷峰塔倒,白蛇出世—白蛇形象演變試析〉,收錄《中國文學研究》(台北:台灣大學中文系,2005年5月,頁179-200。
13. 潘少瑜:〈雷峰塔倒,白蛇出世—白蛇形象演變試析〉,收錄《中國文學研究》(台北:台灣大學中文系,2005年5月,頁179-200。
14. 黃敬欽:〈白蛇故事的迷思結構〉,收錄《中國學術年刊》,第二十期,1999年,頁485-504。
15. 黃敬欽:〈白蛇故事的迷思結構〉,收錄《中國學術年刊》,第二十期,1999年,頁485-504。