(3.230.76.48) 您好!臺灣時間:2021/04/11 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林仰德
研究生(外文):Yang-Te Lin
論文名稱:在大白鼠血小板中血清素5-HT1A受體對於血清素運轉子再回收的調控
論文名稱(外文):Regulation of Serotonin 5-HT1A Receptor on Serotonin Transporter Uptake in Rat Platelet
指導教授:陳景宗
指導教授(外文):Jin-Chung Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:62
中文關鍵詞:血清素血小板血清素5-HT1A受體血清素運轉子
外文關鍵詞:serotoninplatelet5-HT1A receptorserotonin transporter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腦部血清素5-HT1A自控受體和血清素運轉子(SERT)皆為可以調控細胞外血清素且都位於血清素核縫合(raphe nucleus)神經元樹突處。過去文獻證實,當5-HT1A受體活化會啟動下游PKC的活化,且已知PKC可影響SERT再回收血清素及表現在細胞膜上的能力。然而許多文獻已證實SERT可被其他受體所調節,然而對於一樣位於突觸前的5-HT1A受體是否調控SERT卻未有探討。基於以上理由,我們利用大白鼠血小板當作實驗的模型,因為過去文獻指出,血小板含有內生性的5-HT1A受體和SERT。首先,我們利用受體結合實驗及[3H] 5-HT回收實驗確認大白鼠血小板含有5-HT1A受體且也表現有功能性的SERT。之後,我們利用[3H] 5-HT回收實驗在大白鼠血小板處理5-HT1A受體致效劑 (8-OH-DPAT) 0.01~1μM,發現隨劑量增加有減少SERT再回收[3H] 5-HT的現象。此外當我們前處理5-HT1A受體拮抗劑 (WAY100135) 0.1~1μM則可以緩解8-OH-DPAT (0.1μM) 抑制SERT再回收的作用,因此可以確認5-HT1A受體會調控SERT使其減少再回收的功能。接著則進一步探討5-HT1A受體是藉由活化下游哪些訊號蛋白調控SERT的作用。在過去研究證實,PKC和p38 MAPK皆可調控SERT的功能,因此我們探討在大白鼠血小板中,PKC調控SERT情形和p38 MAPK表現及是否會調控SERT的作用。結果發現PKC活化劑 (β-PMA) 0.01~0.1μM及p38 MAPK抑制劑 (SB203580) 0.1~10μM,都會抑制SERT再回收[3H] 5-HT的能力,且p38 MAPK抑制劑會明顯減少p38 MAPK磷酸化的情形;另一方面,處理p38 MAPK活化劑 (anisomycin) 0.1~10μM,對於增加p38 MAPK磷酸化情形則不太明顯。而當不同時間點和濃度作用下活化5-HT1A受體 (1μM 8-OH-DPAT),發現對於p38 MAPK磷酸化情形有些許的抑制作用,但會顯著增加PKCδ/T505及Akt/S473的磷酸化情形。若前處理PKC抑制劑 (GF109203X) 0.3μM或 PI3K抑制劑 (wortmmanin) 0.2μM都可以部分逆轉5-HT1A受體抑制SERT再回收的作用。最後,我們研究當5-HT1A受體抑制SERT再回收的作用,是否也會影響SERT在血小板細胞膜上的表現。利用surface biotinylation assay,當1μM 8-OH-DPAT處理10分鐘或0.1μM β-PMA反應30分鐘的時候,有明顯減少SERT在血小板表面表現的情形,且20μM WAY100135可以緩解8-OH-DPAT促使SERT進行內飲作用(endocytosis)。因此,我們推論,5-HT1A自控受體活化後,除了會抑制神經的活化而抑制血清素的生合成,另一方面也可以利用減少SERT再回收或表現來抑制SERT的功能,雙向調控以維持突觸間隙血清素的含量。
Presynaptic 5-HT1A autoreceptor and serotonin transporter (SERT) each plays an important role in regulation of extracellular 5-HT in the raphe and other brain regions. Based on the knowledge that 5-HT1A receptor positively linked with PKC pathway whiles SERT is one of the potential targets by PKC pathway, we intent to test if presynaptic 5-HT autoreceptors could function synergistically with SERT to fine-tune the 5-HT release. To this purpose, we isolated the rat platelets which bear endogenous 5-HT1A receptors and SERT and used them as a model system to explore the potential regulatory mechanism(s). First, we applied quick screening 5HT1AR binding and [3H] 5-HT uptake assay to confirm 5-HT1A receptor and SERT were both expressed in rat platelets. Second, administration of 5-HT1A receptor agonist, 8-OH-DPAT dose- (0.01-1μM) and time- (0-60 min)-dependently inhibited the [3H] 5-HT uptake in rat platelets. This inhibition could be reversed by pretreatment of 5-HT1A antagonist, WAY100135. To identify the signal pathway(s) that might underlie the 5-HT1A regulation on SERT, we found that 5-HT1A activation could trigger the PKCδ and Akt phsophorylation but appear not to functionally couple with p38 MAPK pathway. Both pretreatment of PKC inhibitor GF109203X or PI3K inhibitor wortmannin would partially reverse the inhibitory effect of 5-HT1A receptor–mediated [3H] 5-HT uptake. Further, both signals were demonstrated to be able to modulate the SERT uptake efficacy, since β-PMA (0.01-0.1μM), a PKC activator and SB203580 (0.1-10μM), a p38MAPK inhibitor, both dose-dependently inhibited the [3H]5-HT uptake in rat platelets. In addition, via surface biotinylation, we found both 8-OH-DPAT (1μM, 10 min) and β-PMA (0.1μM, 30 min) reduced SERT surface expression in rat platelets whiles 8-OH-DPAT-triggered SERT internalization could be reversed by the pretreatment of WAY100135 (20μM). In conclusion, for now, it is expected in the CNS, presynaptic 5-HT1A autoreceptor could exert similar regulation on SERT to fine-turn the transmitter release in the synapse.
指導教授推薦書…………………………………………………………
口試委員會審定書………………………………………………………
授權書…………………………………………………………………...iii
誌謝……………………………………………………………………...iv
中文摘要…………………………………………………………………v
英文摘要………………………………………………………………..vii
目錄……………………………………………………………………...ix
A. Background……………………………………………………….. 1
1. Serotoninergic system ………………………………………... 1
2. Classification of Serotonin Receptor………………………… 2
2.1 Characters of 5-HT1A receptor……………………………..2
2.2 5-HT1A autoreceptor………………………………………3
2.3 5-HT1A receptor-mediated cellular signaling………………4
3. Platelets serotonin……………………………………………...5
4.1 Serotonin transporter(SERT)………………………………….. 6
4.2 Regulation of SERT………………………………...…………7
5. Serotonin-dependent disorder: Depression………………..……8
B. Specific aim…………………………………………………………9
C. Experimental designs………………………………………………10
D. Materials and Methods……………………………………………11
1. Materials…………………………………………………….11
2. Animals………………………………………………………….12
3. Isolation of rat platelets……………………………………….13
4. Platelet 5-HT1A receptor binding assay………………………13
5. [3H] 5-HT uptake assay………………………………………….14
6. Western immunoblots…………………………………………...14
7. Surface biotinylation…………………………………………….15
8. Data analysis and statistics………………………………………15
E. Results………………………………………………………………..15
1. Characterization of 5-HT1A receptor binding and SERT uptake in
human and rat platelets…………………………………….……16
2. Activation of 5-HT1A receptors decreased [3H] 5-HT uptake in the
rat platelets………………………………………………….16
3. Regulation of p38 MAPK on SERT activity and activation of
5-HT1A receptors appeared not to functionally couple with p38
MAPK pathway in the rat platelets……..……………………….17
4. The effect of 5-HT1A receptor-mediated SERT inhibition via
PKCδ/Thr505 in the rat platelets……..………………………..18
5. The effect of 5-HT1A receptor-mediated SERT inhibition via
Akt/Ser473 in the rat platelets…………….…………………....18
6. Activation of 5-HT1A receptor enhanced SERT internalization in
the rat platelets……………………………………………….19
F. Discussion………………………………………………………..20
G. Reference…………………………………………………………...25
Table……………………………………………………………………..34
Figure…………………………………………………………………35



Table 1. Characterization of 5-HT1A receptor binding and SERT uptake in rat platelets………………………………………………………………34
Figure 1. The effect of 5-HT1A agonist, 8-OH-DPAT on [3H] 5-HT uptake in rat platelets……………………………………………………………35
Figure 2. Characterization of basal p38 MAPK phosphorylation in rat platelets………………………………………………………………….38
Figure 3. The effect of SB203580 on [3H] 5-HT uptake in rat platelets………………………………………………………………….40
Figure 4 . The effect of 8-OH-DPAT on p38 MAPK phosphorylation in rat platelets………………………………………………….…………41
Figure 5 . Dose-dependent effect of PKC activator, β-PMA on [3H] 5-HT uptake in rat platelets……………………………...…………………….42
Figure 6 . The effect of 8-OH-DPAT on PKCδ T505 phosphorylation in rat platelets………………………………………………………………43
Figure 7. The effect of 8-OH-DPAT on PKCα/βII and PKCδ/θ (S643/676) phosphorylation in rat platelets…………………………………………44 Figure 8. Inhibitors of PKCδ block 8-OH-DPAT reduction of SERT activity in rat platelets…………………………………...........................45
Figure 9 . The effect of 8-OH-DPAT on Akt s473 phosphorylation in rat platelets………………………………………………………………….46
Figure 10. Inhibitors of PI3K block 8-OH-DPAT reduction of SERT activity in rat platelets…………………………………………………47
Fiqure 11. The effect of 8-OH-DPAT on surface expression of SERT in rat platelets…………………………………………………...………….48

Fiqure 12. Schematic diagram illustrates the regulation of serotonin
5-HT1A receptor on SERT in rat platelets………………………………49
Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 39:154-180.
Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O (1990) Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem 265:5825-5832.
Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73-93.
Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394:99-124.
Ansah TA, Ramamoorthy S, Montanez S, Daws LC, Blakely RD (2003) Calcium-dependent inhibition of synaptosomal serotonin transport by the alpha 2-adrenoceptor agonist 5-bromo-N-[4,5-dihydro-1H- imidazol-2-yl]-6-quinoxalinamine (UK14304). J Pharmacol Exp Ther 305:956-965.
Baldassare JJ, Henderson PA, Burns D, Loomis C, Fisher GJ (1992) Translocation of protein kinase C isozymes in thrombin-stimulated human platelets. Correlation with 1,2-diacylglycerol levels. J Biol Chem 267:15585-15590.
Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD (2000) Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J Neurosci 20:7571-7578.
Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623-626.
Birthelmer A, Ehret A, Riegert C, Rothmaier AK, Leemhuis J, Jackisch R (2007) Modulation of electrically evoked serotonin release in cultured rat raphe neurons. J Neurochem 100:1613-1625.
Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A, DeFelice LJ (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry 44:169-178.
Blier P, de Montigny C (1990) Differential effect of gepirone on presynaptic and postsynaptic serotonin receptors: single-cell recording studies. J Clin Psychopharmacol 10:13S-20S.
Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C (1998) Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 861:204-216.
Boldrini M, Underwood MD, Mann JJ, Arango V (2007) Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatr Res.
Burns N, Brett L, Olverman HJ, Nagatsu T, Lee MR, Williams BC (1996) The role of L-aromatic amino acid decarboxylase in serotonin-stimulated aldosterone secretion in response to salt intake. Endocr Res 22:577-578.
Casanovas JM, Artigas F (1996) Differential effects of ipsapirone on 5-hydroxytryptamine release in the dorsal and median raphe neuronal pathways. J Neurochem 67:1945-1952.
Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447:519-531.
Colino A, Halliwell JV (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328:73-77.
De Vivo M, Maayani S (1986) Characterization of the 5-hydroxytryptamine 1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238:248-253.
Erspamer V, Asero B (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800-801.
Fuller RW, Wong DT (1990) Serotonin uptake and serotonin uptake inhibition. Ann N Y Acad Sci 600:68-78; discussion 79-80.
Gershon MD (2003) Plasticity in serotonin control mechanisms in the gut. Curr Opin Pharmacol 3:600-607.
Grabarek J, Raychowdhury M, Ravid K, Kent KC, Newman PJ, Ware JA (1992) Identification and functional characterization of protein kinase C isozymes in platelets and HEL cells. J Biol Chem 267:10011-10017.
Haase J, Killian AM, Magnani F, Williams C (2001) Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans 29:722-728.
Harrington MA, Shaw K, Zhong P, Ciaranello RD (1994) Agonist-induced desensitization and loss of high-affinity binding sites of stably expressed human 5-HT1A receptors. J Pharmacol Exp Ther 268:1098-1106.
Hranilovic D, Lesch KP, Ugarkovic D, Cicin-Sain L, Jernej B (1996) Identification of serotonin transporter mRNA in rat platelets. J Neural Transm 103:957-965.
Hsiung SC, Tamir H, Franke TF, Liu KP (2005) Roles of extracellular signal-regulated kinase and Akt signaling in coordinating nuclear transcription factor-kappaB-dependent cell survival after serotonin 1A receptor activation. J Neurochem 95:1653-1666.
Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165-229.
Jayanthi LD, Ramamoorthy S (2005) Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. Aaps J 7:E728-738.
Jayanthi LD, Samuvel DJ, Blakely RD, Ramamoorthy S (2005) Evidence for biphasic effects of protein kinase C on serotonin transporter function, endocytosis, and phosphorylation. Mol Pharmacol 67:2077-2087.
Kushwaha N, Albert PR (2005) Coupling of 5-HT1A autoreceptors to inhibition of mitogen-activated protein kinase activation via G beta gamma subunit signaling. Eur J Neurosci 21:721-732.
Lanfumey L, Hamon M (2004) 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord 3:1-10.
Liu YF, Albert PR (1991) Cell-specific signaling of the 5-HT1A receptor. Modulation by protein kinases C and A. J Biol Chem 266:23689-23697.
Mann JJ, Huang YY, Underwood MD, Kassir SA, Oppenheim S, Kelly TM, Dwork AJ, Arango V (2000) A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 57:729-738.
Martel F (2006) Recent advances on the importance of the serotonin transporter SERT in the rat intestine. Pharmacol Res 54:73-76.
Martini C, Trincavelli ML, Tuscano D, Carmassi C, Ciapparelli A, Lucacchini A, Cassano GB, Dell'Osso L (2004) Serotonin-mediated phosphorylation of extracellular regulated kinases in platelets of patients with panic disorder versus controls. Neurochem Int 44:627-639.
Maurer-Spurej E (2005) Serotonin reuptake inhibitors and cardiovascular diseases: a platelet connection. Cell Mol Life Sci 62:159-170.
Mendelson SD (2000) The current status of the platelet 5-HT(2A) receptor in depression. J Affect Disord 57:13-24.
Miller KJ, Hoffman BJ (1994) Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem 269:27351-27356.
Mitchell SM, Lee E, Garcia ML, Stephan MM (2004) Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J Biol Chem 279:24089-24099.
Muller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133-178.
Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288-295.
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553-580.
Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285:763-766.
Ramamoorthy S, Samuvel DJ, Buck ER, Rudnick G, Jayanthi LD (2007) Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP. J Biol Chem 282:11639-11647.
Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A 95:14476-14481.
Raymond JR, Kim J, Beach RE, Tisher CC (1993) Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am J Physiol 264:F9-19.
Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN (1999) The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol 127:1751-1764.
Raymond JR, Albers FJ, Middleton JP, Lefkowitz RJ, Caron MG, Obeid LM, Dennis VW (1991) 5-HT1A and histamine H1 receptors in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J Biol Chem 266:372-379.
Raymond JR, Fargin A, Middleton JP, Graff JM, Haupt DM, Caron MG, Lefkowitz RJ, Dennis VW (1989) The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. J Biol Chem 264:21943-21950.
Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92:179-212.
Riad M, Watkins KC, Doucet E, Hamon M, Descarries L (2001) Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). J Neurosci 21:8378-8386.
Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417:181-194.
Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S (2005) A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci 25:29-41.
Shiah IS, Yatham LN, Lam RW, Tam EM, Zis AP (1998) Cortisol, hypothermic, and behavioral responses to ipsapirone in patients with bipolar depression and normal controls. Neuropsychobiology 38:6-12.
Sinton CM, Fallon SL (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157:173-181.
Sotelo C, Cholley B, El Mestikawy S, Gozlan H, Hamon M (1990) Direct Immunohistochemical Evidence of the Existence of 5-HT1A Autoreceptors on Serotoninergic Neurons in the Midbrain Raphe Nuclei. Eur J Neurosci 2:1144-1154.
Stockmeier CA, Shapiro LA, Haycock JW, Thompson PA, Lowy MT (1996) Quantitative subregional distribution of serotonin1A receptors and serotonin transporters in the human dorsal raphe. Brain Res 727:1-12.
Thompson AJ, Lummis SC (2006) 5-HT3 receptors. Curr Pharm Des 12:3615-3630.
van Wijngaarden I, Tulp MT, Soudijn W (1990) The concept of selectivity in 5-HT receptor research. Eur J Pharmacol 188:301-312.
Vaughan RA (2004) Phosphorylation and regulation of psychostimulant-sensitive neurotransmitter transporters. J Pharmacol Exp Ther 310:1-7.
Weiss S, Sebben M, Kemp DE, Bockaert J (1986) Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur J Pharmacol 120:227-230.
White KJ, Walline CC, Barker EL (2005) Serotonin transporters: implications for antidepressant drug development. Aaps J 7:E421-433.
Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD (2004) Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol 65:1462-1474.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔