(3.236.82.241) 您好!臺灣時間:2021/04/13 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅肯
研究生(外文):Ya-Ken Chen
論文名稱:紐西蘭黑鼠其CD4+CD25+調控型T細胞功能缺失之鑑定
論文名稱(外文):Identification of the deficiency of CD4+CD25+ T regulatory cells in New Zealand Black mice
指導教授:沈家瑞
指導教授(外文):Chia-Rui Shen
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:51
外文關鍵詞:NZBCD4+CD25+ regulatory T cellsFoxp3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
NZB小鼠會自發性產生自體免疫溶血性貧血,其自體抗體主要辨識的是紅血球上的陰離子交換通道蛋白- Band 3。已知Band 3 peptide 861-874具有自體反應的CD4+ T細胞可辨識的抗原辨識位置(epitope),可參與影響NZB小鼠疾病的發生;當利用該 peptide的衍生物治療NZB小鼠,除了可減少疾病發生外,其體內CD4+CD25+ T細胞的比例會增加。更進一步則發現,將純化後的BALB/c小鼠的CD4+CD25+ T細胞送入NZB小鼠體內後,亦可減緩NZB小鼠自體抗體的生成。因此,這個研究專題將深入探討CD4+CD25+ T細胞在NZB疾病發展的角色,並嘗試以基因工程的方法建立可高度表現Foxp3的調控型T細胞。研究結果顯示, NZB小鼠體內CD4+CD25+細胞比例較同週齡的BALB/c小鼠低,且NZB小鼠的CD4+CD25+細胞中會表現Foxp3的細胞也較少;同時這些純化出來的CD4+CD25+細胞並無法像BALB/c的CD4+CD25+細胞一樣可有效的抑制其他細胞增生及抑制多種細胞激素的產生。此外,當構築完成的Foxp3高表現載體轉染至小鼠脾臟細胞後,發現這群高表現Foxp3的細胞具有較低的增生能力。未來我們將進一步純化出這群細胞並移殖至NZB小鼠體內,進一步了解利用基因工程所得的調控型T細胞是否能有效的治療自體免疫疾病。
New Zealand Black (NZB) mice spontaneously develop autoimmune hemolytic anemia (AIHA). The major target of the pathogenic red blood cell (RBC) autoantibodies is the anion channel protein Band 3, and CD4 T cells from NZB mice also respond to Band 3. Previous studies from our laboratories showed that Band 3 peptide 861-874 contains a dominant autoreactive helper T-cell epitope with the ability in vivo to modulate the course of AIHA in NZB mice. We have recently found that after inhaling this peptide, the proportion of CD4+CD25+ cells, which are recognized as regulatory T cells were promoted. Adoptive transfer of BLAB/c CD4+CD25+ cells can significantly reduce their RBC bound autoantibody levels. Therefore, in this study, I aim to characterize the CD4+CD25+ regulatory T cells in NZB AIHA development and generate the gene-engineered Foxp3-expressing regulatory cells in vitro. First, we have demonstrated that much lower frequency of regulatory T cells was found in NZB mice as compared to the age-matched BALB/c animals. Second, the expression of Foxp3, the potential marker of T regulatory cells, was reduced in these NZB CD4+CD25+ cells. Most importantly, these CD4+CD25+ cells in NZB mice seemed to lose the suppressive effects on cell proliferation and cytokine production, whereas the CD4+CD25+ cells isolated from BALB/c mice were able to abolish the cell proliferation in response to CD3 stimulation. Finally, the Foxp3-high expressing vector has been constructed and transfected into primary mouse T cells by nucleofection. After transfection with Foxp3, the Foxp3 gene-engineered cells were anergic to anti-CD3/CD28 in vitro. Further studies will test if these gene-engineered regulatory T cells are able to suppress autoimmune diseases.
指導教授推薦書…………………………………………………………………
口試委員會審定書………………………………………………………………
授權書……………………………………………………………………………. iii
誌謝………………………………………………………………………………. iv
中文摘要…………………………………………………………………………… v
英文摘要…………………………………………………………………………. vi
目錄………………………………………………………………………………. viii
圖表目錄……………………………………………………………………………. ix
第一章 研究背景的與目的…………………………………………………….. 1
第二章 材料方法……………………………………………………………..7
第三章 實驗結果……………………………………………………………. 16
3.1 CD4+CD25+T細胞在小鼠體內所佔比例……….……………………...16
3.2 CD4+CD25+T細胞之功能檢測.……………………………………... …17
3.3 以基因工程的方法建立Foxp3高表現之調控型細胞..……...………. 18
第四章 討論…………………………………………………………………. 21
參考文獻…………………………………………………………………….…… 41
附錄………………………………………………………………………………. 45
Barker, R.N., de Sa Oliveira, G.G., Elson, C.J., and Lydyard, P.M. (1993). Pathogenic autoantibodies in the NZB mouse are specific for erythrocyte band 3 protein. Eur J Immunol 23, 1723-1726.
Bettelli, E., Dastrange, M., and Oukka, M. (2005). Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 102, 5138-5143.
Bielschowsky, M., and Goodall, C.M. (1970). Origin of inbred NZ mouse strains. Cancer Res 30, 834-836.
Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27, 68-73.
DeHeer, D.H., and Edgington, T.S. (1976). Specific antigen-binding and antibody-secreting lymphocytes associated with the erythrocyte autoantibody responses of NZB and genetically unrelated mice. J Immunol 116, 1051-1058.
Fehervari, Z., and Sakaguchi, S. (2004). Development and function of CD25+CD4+ regulatory T cells. Curr Opin Immunol 16, 203-208.
Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
Gershon, R.K. (1975). A disquisition on suppressor T cells. Transplant Rev 26, 170-185.
Gresch, O., Engel, F.B., Nesic, D., Tran, T.T., England, H.M., Hickman, E.S., Korner, I., Gan, L., Chen, S., Castro-Obregon, S., et al. (2004). New non-viral method for gene transfer into primary cells. Methods 33, 151-163.
Herndon, T.M., Juang, Y.T., Solomou, E.E., Rothwell, S.W., Gourley, M.F., and Tsokos, G.C. (2002). Direct transfer of p65 into T lymphocytes from systemic lupus erythematosus patients leads to increased levels of interleukin-2 promoter activity. Clin Immunol 103, 145-153.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Jaeckel, E., von Boehmer, H., and Manns, M.P. (2005). Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 54, 306-310.
Khattri, R., Cox, T., Yasayko, S.A., and Ramsdell, F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4, 337-342.
Klaiber, N. (2007). Potential for stimulating host anti-tumor immune response via RNAi-mediated local FOXP3 knockdown. Cancer Gene Ther 14, 519-520.
Lai, W., Chang, C.H., and Farber, D.L. (2003). Gene transfection and expression in resting and activated murine CD4 T cell subsets. J Immunol Methods 282, 93-102.
Li, L., Iwamoto, Y., Berezovskaya, A., and Boussiotis, V.A. (2006). A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat Immunol 7, 1157-1165.
Liu, W., Putnam, A.L., Xu-Yu, Z., Szot, G.L., Lee, M.R., Zhu, S., Gottlieb, P.A., Kapranov, P., Gingeras, T.R., Fazekas de St Groth, B., et al. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203, 1701-1711.
Longhi, M.S., Hussain, M.J., Mitry, R.R., Arora, S.K., Mieli-Vergani, G., Vergani, D., and Ma, Y. (2006). Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176, 4484-4491.
Oliveira, G.G., Hutchings, P.R., Roitt, I.M., and Lydyard, P.M. (1994). Production of erythrocyte autoantibodies in NZB mice is inhibited by CD4 antibodies. Clin Exp Immunol 96, 297-302.
Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6, 345-352.
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155, 1151-1164.
Shen, C.R., Mazza, G., Perry, F.E., Beech, J.T., Thompson, S.J., Corato, A., Newton, S., Barker, R.N., and Elson, C.J. (1996). T-helper 1 dominated responses to erythrocyte Band 3 in NZB mice. Immunology 89, 195-199.
Shen, C.R., Wraith, D.C., and Elson, C.J. (1999). Splenic but not thymic autoreactive T cells from New Zealand Black mice respond to a dominant erythrocyte Band 3 peptide. Immunology 96, 595-599.
Shen, C.R., Youssef, A.R., Devine, A., Bowie, L., Hall, A.M., Wraith, D.C., Elson, C.J., and Barker, R.N. (2003). Peptides containing a dominant T-cell epitope from red cell band 3 have in vivo immunomodulatory properties in NZB mice with autoimmune hemolytic anemia. Blood 102, 3800-3806.
Valencia, X., Yarboro, C., Illei, G., and Lipsky, P.E. (2007). Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178, 2579-2588.
Wang, S., Xu, H., Wang, Y., Ma, J., Mao, C., Shao, Q., Ma, B., Xu, W., and Yang, S. (2006). Regulatory T cells induced by rAAV carrying the forkhead box P3 gene prevent autoimmune thyroiditis in mice. Int J Mol Med 18, 1193-1199.
Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L., et al. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27, 18-20.
Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates, D.L., Guo, L., Han, A., Ziegler, S.F., et al. (2006). FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375-387.
張家菁 (2006). 細胞激素IL-4與調節性T細胞可減緩NZB小鼠自體免疫溶血性貧血的發生. In 醫學生物技術研究所 (長庚大學).
張筱苑 (2004). 紅血球抗原Band 3 861-874抑制NZB小鼠CD4+CD25+細胞及IL-10之免疫反應. In 醫學生物技術研究所 (長庚大學).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔