|
[1]C. Kittel, Introduction to Solid State Physics, Wiley, Singapore, 1986. [2]R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum States of Confined Carriers in Very Thin AlxGa1-xAs-GaAs-AlxGa1-xAs Heterostructures”, Physical Review Letters, 33, pp. 827-830, 1974. [3]J. Christen and D. Bimberg, “Line shapes of intersubband and excitonic recombination in quantum wells: Influence of final- state interaction, statistical broadening, and momentum conservation”, Physical Review B, 42, pp. 7213-7218, 1990. [4]J. Christen, M. Krahl, and D. Bimberg, “Visualization of the transition from 2d to 3d and from non-k-conservation to k- conservation in the lineshapes of quantum wells and true superlattices”, Superlattices and Microstructures, 7, pp. 1-4, 1990. [5]E. Kapon, D. M. Hwang, and R. Bhat, “Stimulated emission in semiconductor quantum wire heterostructures”, Physical Review Letters, 63, pp. 430-433, 1989. [6]Y. Arkawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Applied Physics Letters, 40, pp. 939-941, 1982. [7]L. Brus, “Zero-dimensional "excitons" in semiconductor clusters”, IEEE Journal of Quantum Electronics, 22, pp. 1909- 1914, 1986. [8]D. S. Chemla and D. A. B. Miller, “Mechanism for enhanced optical nonlinearities and bistability by combined dielectric-electronic confinement in semiconductor micro- crystallites”, Optical Letters, 11, pp. 522-524, 1986. [9]D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces”, Applied Physics Letters, 63, pp. 3203-3205, 1993. [10]M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots”, Physical Review B, 54, pp. R2300-R2303, 1996. [11]S. Sauvage, P. Boucaud, F. H. Julien, J. M. Gerard, and V. Thierry-Mieg, “Intraband absorption in n-doped InAs/GaAs quantum dots”, Applied Physics Letters, 71, pp. 2785-2787, 1997. [12]G. Yusa and H. Sakaki, “Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures”, Applied Physics Letters, 70, pp. 345-347, 1997. [13]X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser”, IEEE Photonics Technology Letters, 12, pp. 227-229, 2000. [14]O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with To = 161 K from 0 to 80°C”, Applied Physics Letters, 80, pp. 3277-3279, 2002. [15]P. Bhattacharya and S. Ghosh, “Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature”, Applied Physics Letters, 80, pp. 3482-3484, 2002. [16]H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution”, Applied Physics Letters, 73, pp. 3556-3558, 1998. [17]A. Polimeni, A. Patanè, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/ AlyGa1-yAs self-organized quantum dots”, Physical Review B, 59, pp. 5064-5068, 1999. [18]C. Lobo, R. Leon, S. Marcinkevičius, W. Yang, P. C. Sercel, X. Z. Liao, J. Zou, and D. J. H. Cockayne, “Inhibited carrier transfer in ensembles of isolated quantum dots”, Physical Review B, 60, pp. 16647-16651, 1999. [19]S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, “Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots”, Applied Physics Letters, 65, pp. 1388-1390, 1994. [20]K. Mukai, N. Ohtsuka, and M. Sugawara, “Controlled Quantum Confinement Potentials in Self-Formed InGaAs Quantum Dots Grown by Atomic Layer Epitaxy Technique”, Japanese Journal of Applied Physics, 35, pp. L262-L265, 1996. [21]S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, “Phonons and radiative recombination in self-assembled quantum dots”, Physical Review B, 52, pp. 5752-5761, 1990. [22]R. Leon, S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, “Visible luminescence from semiconductor quantum dots in large ensembles”, Applied Physics Letters, 67, pp. 521-523, 1995. [23]U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases”, Physical Review B, 42, pp. 8947-8951, 1990. [24]H. Benisty, “Reduced electron-phonon relaxation rates in quantum- box systems: Theoretical analysis”, Physical Review B, 51, pp. 13281-13293, 1995. [25]S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, “State filling and time-resolved photoluminescence of excited states in InxGa1-xAs/GaAs self-assembled quantum dots”, Physical Review B, 54, pp. 11548-11554, 1996. [26]S. Grosse, J. H. H. Sandmann, G. V. Plessen, and J. Feldmann, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects”, Physical Review B, 55, pp. 4473-4476, 1997. [27]S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, “Visible photoluminescence from N-dot ensembles and the linewidth of ultrasmall AlyIn1-yAs/AlxGa1-xAs quantum dots”, Physical Review B, 50, pp. 8086-8089, 1994. [28]G. G. Tarasov, Y. I. Mazur, Z. Y. Zhuchenko, A. Maabdorf, D. Nickel, J. W. Tomm, H. Kissel, C. Walther, and J. T. Masselink, “Carrier transfer in self-assembled coupled InAs/GaAs quantum dots”, Journal of Applied Physics, 88, pp. 7162-7170, 2000. [29]R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, and D. Bimberg, “Carrier transfer in self- assembled coupled InAs/GaAs quantum dots”, Physical Review B, 56, pp. 10435-10445, 1997. [30]E. C. Le Ru, P. D. Siverns, and R. Murray, “Luminescence enhancement from hydrogen-passivated self-assembled quantum dots”, Applied Physics Letters, 77, pp. 2446-2448, 2000. [31]D. I. Lubyshev, P. P. Gonzalez, E. Mareda, E. Petitprez, N. Lascala, and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots”, Applied Physics Letters, 68, pp. 205-207, 1996. [32]L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, “Thermally activated carrier transfer and luminescence line shape in self-organized InAs quantum dots”, Applied Physics Letters, 69, pp. 3354-3357, 1996. [33]W. Yang, R. R. Lowe-Webb, H. Lee, and P. C. Sercel, “Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots”, Physical Review B, 56, pp. 13314-13320, 1997. [34]Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, and J. Z. Xu, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates”, Physical Review B, 54, pp. 11528-11531, 1996. [35]W. H. Jiang, X. L. Ye, B. Xu, H. Z. Xu, D. Ding, J. B. Liang, and Z. G. Wang, “Anomalous temperature dependence of photo- luminescence from InAs quantum dots”, Journal of Applied Physics, 88, pp. 2529-2532, 2000. [36]D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum wells”, Physical Review B, 51, pp. 16785-16789, 1995. [37]S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizz, P. Frigeri and S. Franchi, “Carrier thermal escape and retrapping in self- assembled quantum dots”, Physical Review B, 60, pp. 8276-8283, 1999. [38]E. C. Le Ru, J. Fack, and R. Murray, “Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots”, Physical Review B, 60, pp. 245318-1- 245318-12, 2003. [39]K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, “Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck”, Applied Physics Letters, 68, pp. 3013-3015, 1996. [40]K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, and P. M. Petroff, “Carrier relaxation and electronic structure in InAs self-assembled quantum dots”, Physical Review B, 54, pp. 11346- 11353, 1996. [41]S. Sanguinetti, K. Watanabe, T. Tateno, M. Wakaki, N. Koguchi, T. Kuroda, F. Minami, and M. Gurioli, “Role of the wetting layer in the carrier relaxation in quantum dots”, Applied Physics Letters, 81, pp. 613-615, 2002. [42]L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices”, Applied Physics Letters, 47, pp. 1099-1101, 1985. [43]G. S. Solomon, J. A. Trezza, and J. S. J. Harris, “Effects of monolayer coverage, flux ratio, and growth rate on the island density of InAs islands on GaAs”, Applied Physics Letters, 66, pp. 3161-3163, 1995. [44]W. Q. Cheng, X. G. Xie, Z. Y. Zhong, L. H. Cai, Q. Huang, and J. M. Zhou, “Photoluminescence from InAs quantum dots on GaAs (100)”, Thin Solid Films, 312, pp. 287-290, 1998. [45]S. Marcinkevičius and R. Leon, “Photoexcited carrier transfer in InGaAs quantum dot structures: Dependence on the dot density”, Applied Physics Letters, 76, pp. 2406-2408, 2000. [46]X. Q. Zhang, S. Ganapathy, H. Kumano, K. Uesugi, and I. Suemene, “Photoexcited carrier transfer in InGaAs quantum dot structures: Dependence on the dot density”, Journal of Applied Physics, 92, pp. 6813-6818, 2002. [47]J. W. Tomm, T. Elsaesser, Y. I. Mazur, H. Kissel, G. G. Tarasov, Z. Y. Zhuchenko, and W. T. Masselink, “Transient luminescence of dense InAs/GaAs quantum dot arrays”, Physical Review B, 67, pp. 045326-1-045326-8, 2003. [48]Wen-Hao Chang, Tzu-Min Hsu, Kuei-Fen Tsai, Tzer-En Nee, Jen-Inn Chyi, and Nien-Tze Yeh, “Excitation Density and Temperature Dependent Photoluminescence of InGaAs Self- Assembled Quantum Dots”, Japanese Journal of Applied Physics, 38, pp. 554-557, 1999. [49]W. Y. Wu, J. N. Schulman, T. Y. Hsu, and U. Efron, “Effect of size nonuniformity on the absorption spectrum of a semiconductor quantum dot system”, Applied Physics Letters, 51, pp. 710-712, 1987. [50]H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shape in InAs/GaAs quantum- dot structures”, Physical Review B, 55, pp. 9757-9762, 1997. [51]Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, “Thermal redistribution of photocarriers between bimodal quantum dots”, Journal of Applied Physics, 90, pp. 1973-1976, 2001. [52]K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, “Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence”, Physical Review B, 54, pp. R5243-R5246, 1996. [53]F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots”, Journal of Applied Physics, 80, pp. 4019-4026, 1996. [54]S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time- esolved studies of annealed InAs/GaAs self-assembled quantum dots”, Physical Review B, 63, pp. 155313-1-155313-6, 2001. [55]H. Jiang and J. Singh, “Nonequilibrium distribution in quantum dots lasers and influence on laser spectral output”, Journal of Applied Physics, 85, pp. 7438-7442, 1999. [56]Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses”, Journal of Applied Physics, 82, pp. 4489-4492, 1997. [57]Y. I. Mazur, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, and H. Kissel, “Photoluminescence study of carrier transfer among vertically aligned double-stacked InAs/GaAs quantum dot layers”, Applied Physics Letters, 81, pp. 2469-2471, 2002. [58]T. E. Nee, Y. F. Wu, and R. M. Lin, “Effect of carrier hopping and relaxing on photoluminescence line shape in self-organized InAs quantum dot heterostructures”, Journal of Vacuum Science and Technology, 23, pp. 954-958, 2005. [59]Motlan and E. M. Goldys, “Photoluminescence of multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition at atmospheric pressure”, Applied Physics Letters, 79, pp. 2976-2978, 2001. [60]Y. Chen, G. P. Kothiyal, J. Singh, and P. K. Bhattacharya, “Absorption and photoluminescence studies of the temperature dependence of exciton life time in lattice-matched and strained quantum well systems”, Superlattices and Microstructures, 3, pp. 657-664, 1987. [61]J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Coherent resonant tunneling time and velocity in finite periodic systems”, Physical Review B, 71, pp. 125317-1-125319-6, 2005. [62]H. Zhao, S. Wachter, and H. Kalt, “Effect of quantum confinement on exciton-phonon interactions”, Physical Review B, 66, pp. 085337-1-085337-5, 2002. [63]G. Ortner, D. R. Yakovlev, M. Bayer, S. Rudin, T. L. Reinecke, S. Fafard, Z. Wasilewski, and A. Forchel, “Temperature dependence of the zero-phonon linewidth in InAs/GaAs quantum dots”, Physical Review B, 70, pp. 201301-1-201301-4, 2004. [64]S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors”, Physical Review B, 42, pp. 11218-11231, 1990. [65]S. Rudin and T. L. Reinecke, “Temperature-dependent exciton linewidths in semiconductor quantum wells”, Physical Review B, 41, pp. 3017-3027, 1990. [66]M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, and D. Bimberg, “Ultranarrow Luminescence Lines from Single Quantum Dots”, Physical Review Letters, 74, pp. 4043-4046, 1995.
|