跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳亞芬
研究生(外文):WU YA-FEN
論文名稱:砷化銦/砷化鎵量子點異質結構之載子動力學探討
論文名稱(外文):Carrier Dynamics Study of InAsGaAs Quantum-Dot Heterostructures
指導教授:倪澤恩
指導教授(外文):NEE TZER-EN
學位類別:博士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:100
中文關鍵詞:量子點異質結構熱重新分佈效應電子聲子散射效應速率方程式
外文關鍵詞:quantum-dot heterostructuresthermal redistribution effectselectron-phonon scattering effectsrate equations
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以實驗方法與理論分析,來探討自聚性砷化銦/砷化鎵量子點異質結構內的載子動力學機制。我們提出一個涵蓋了量子點尺寸分佈,隨機式能態密度分佈,以及量子點系統內所有重要的載子遷移機制的理論模型。模型中所考慮的載子遷移機制包括了載子的捕獲與鬆弛,放射性與非放射性結合,熱躍遷與再捕獲,以及熱導致的電子–聲子散射效應等。量子點系統內與熱重新分佈效應、載子水平遷移、能態密度佔據率有關的各項動力學機制,均被詳細的加以說明與討論。在實驗上,我們對具有不同量子點尺寸分佈情形的砷化銦量子點樣品,量測其變溫及變功率的光激光譜圖,並以建立的理論模型對實驗結果做分析;除此之外,也詳盡探討了量子點系統內,藉由聲子輔助所產生的載子遷移現象,及其對光激光譜的影響。最後,對於熱重新分佈效應及電子聲子散射效應兩者之間關連性的定量化討論,使我們能夠明確的解釋隨溫度上升所量測觀察到的,來自於不同尺寸分佈之量子點樣品,其所表現出的不同變溫光激光譜特性。
We investigate the carrier dynamics of the self-assembled InAs/GaAs quantum-dot (QD) heterostructures experimentally and theoretically. Theoretical discussions that take into account the dot size distribution, the random population of density of states, and the important carrier transferring mechanisms of a QD system, are proposed. The carrier capturing and relaxing, radiative and nonradiative recombination, thermal emission and retrapping, and the thermal induced electron-phonon scattering, are all considered. Mechanisms of carrier dynamics in QD system related to the thermal redistribution and lateral transition of excitons, and the filling effect on density of states, are discussed in detail. The temperature and incident-power dependent photoluminescence spectra from QD samples with different dot size distributions are measured and studied. In addition, the phonon-assisted activations of excitons in the QD system are analyzed. Quantitative discussion of the correlation between thermal redistribution and electron-phonon scattering effects on QD system provides distinct explanation for the different behaviors with increasing temperature that observed in the photoluminescence spectra from QD heterostructures.
CHAPTER I Introduction

1.1 Historical Development
1.2 Objective of the Study

CHAPTER II Experimental Results

CHAPTER III Theoretical Model

CHAPTER IV Carrier Hopping and Retrapping Effects on
Photoluminescence Spectra

4.1 Discussions of Temperature Dependent PL Spectra
4.2 Discussions of Incident-Power Dependent PL Spectra

CHAPTER V Phonon-assisted Effects on Photoluminescence Spectra

5.1 Electron-Phonon Scattering Effect
5.2 Intersublevel Relaxation Process

CHAPTER VI Conclusions and Future Work

REFERENCES
[1]C. Kittel, Introduction to Solid State Physics, Wiley, Singapore,
1986.
[2]R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum States of
Confined Carriers in Very Thin AlxGa1-xAs-GaAs-AlxGa1-xAs
Heterostructures”, Physical Review Letters, 33, pp. 827-830, 1974.
[3]J. Christen and D. Bimberg, “Line shapes of intersubband and
excitonic recombination in quantum wells: Influence of final-
state interaction, statistical broadening, and momentum
conservation”, Physical Review B, 42, pp. 7213-7218, 1990.
[4]J. Christen, M. Krahl, and D. Bimberg, “Visualization of the
transition from 2d to 3d and from non-k-conservation to k-
conservation in the lineshapes of quantum wells and true
superlattices”, Superlattices and Microstructures, 7, pp. 1-4,
1990.
[5]E. Kapon, D. M. Hwang, and R. Bhat, “Stimulated emission in
semiconductor quantum wire heterostructures”, Physical Review
Letters, 63, pp. 430-433, 1989.
[6]Y. Arkawa and H. Sakaki, “Multidimensional quantum well laser and
temperature dependence of its threshold current”, Applied Physics
Letters, 40, pp. 939-941, 1982.
[7]L. Brus, “Zero-dimensional "excitons" in semiconductor
clusters”, IEEE Journal of Quantum Electronics, 22, pp. 1909-
1914, 1986.
[8]D. S. Chemla and D. A. B. Miller, “Mechanism for enhanced optical
nonlinearities and bistability by combined dielectric-electronic
confinement in semiconductor micro- crystallites”, Optical
Letters, 11, pp. 522-524, 1986.
[9]D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and
P. M. Petroff, “Direct formation of quantum-sized dots from
uniform coherent islands of InGaAs on GaAs surfaces”, Applied
Physics Letters, 63, pp. 3203-3205, 1993.
[10]M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure
of InAs/GaAs self-assembled quantum dots”, Physical Review B,
54, pp. R2300-R2303, 1996.
[11]S. Sauvage, P. Boucaud, F. H. Julien, J. M. Gerard, and V.
Thierry-Mieg, “Intraband absorption in n-doped InAs/GaAs quantum
dots”, Applied Physics Letters, 71, pp. 2785-2787, 1997.
[12]G. Yusa and H. Sakaki, “Trapping of photogenerated carriers by
InAs quantum dots and persistent photoconductivity in novel
GaAs/n-AlGaAs field-effect transistor structures”, Applied
Physics Letters, 70, pp. 345-347, 1997.
[13]X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J.
Malloy, “Very low threshold current density room temperature
continuous-wave lasing from a single-layer InAs quantum-dot
laser”, IEEE Photonics Technology Letters, 12, pp. 227-229, 2000.
[14]O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser
with To = 161 K from 0 to 80°C”, Applied Physics Letters, 80,
pp. 3277-3279, 2002.
[15]P. Bhattacharya and S. Ghosh, “Tunnel injection
In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation
bandwidth at room temperature”, Applied Physics Letters, 80, pp.
3482-3484, 2002.
[16]H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C.
Sercel, “Photoluminescence study of in situ annealed InAs
quantum dots: Double-peak emission associated with bimodal size
distribution”, Applied Physics Letters, 73, pp. 3556-3558, 1998.
[17]A. Polimeni, A. Patanè, M. Henini, L. Eaves, and P. C.
Main, “Temperature dependence of the optical properties of InAs/
AlyGa1-yAs self-organized quantum dots”, Physical Review B, 59,
pp. 5064-5068, 1999.
[18]C. Lobo, R. Leon, S. Marcinkevičius, W. Yang, P. C. Sercel, X.
Z. Liao, J. Zou, and D. J. H. Cockayne, “Inhibited carrier
transfer in ensembles of isolated quantum dots”, Physical Review
B, 60, pp. 16647-16651, 1999.
[19]S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, “Selective
excitation of the photoluminescence and the energy levels of
ultrasmall InGaAs/GaAs quantum dots”, Applied Physics Letters,
65, pp. 1388-1390, 1994.
[20]K. Mukai, N. Ohtsuka, and M. Sugawara, “Controlled Quantum
Confinement Potentials in Self-Formed InGaAs Quantum Dots Grown
by Atomic Layer Epitaxy Technique”, Japanese Journal of Applied
Physics, 35, pp. L262-L265, 1996.
[21]S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M.
Petroff, “Phonons and radiative recombination in self-assembled
quantum dots”, Physical Review B, 52, pp. 5752-5761, 1990.
[22]R. Leon, S. Fafard, D. Leonard, J. L. Merz, and P. M.
Petroff, “Visible luminescence from semiconductor quantum dots
in large ensembles”, Applied Physics Letters, 67, pp. 521-523,
1995.
[23]U. Bockelmann and G. Bastard, “Phonon scattering and energy
relaxation in two-, one-, and zero-dimensional electron gases”,
Physical Review B, 42, pp. 8947-8951, 1990.
[24]H. Benisty, “Reduced electron-phonon relaxation rates in quantum-
box systems: Theoretical analysis”, Physical Review B, 51, pp.
13281-13293, 1995.
[25]S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S.
Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L.
Merz, “State filling and time-resolved photoluminescence of
excited states in InxGa1-xAs/GaAs self-assembled quantum dots”,
Physical Review B, 54, pp. 11548-11554, 1996.
[26]S. Grosse, J. H. H. Sandmann, G. V. Plessen, and J.
Feldmann, “Carrier relaxation dynamics in quantum dots:
Scattering mechanisms and state-filling effects”, Physical
Review B, 55, pp. 4473-4476, 1997.
[27]S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M.
Petroff, “Visible photoluminescence from N-dot ensembles and the
linewidth of ultrasmall AlyIn1-yAs/AlxGa1-xAs quantum dots”,
Physical Review B, 50, pp. 8086-8089, 1994.
[28]G. G. Tarasov, Y. I. Mazur, Z. Y. Zhuchenko, A. Maabdorf, D.
Nickel, J. W. Tomm, H. Kissel, C. Walther, and J. T.
Masselink, “Carrier transfer in self-assembled coupled InAs/GaAs
quantum dots”, Journal of Applied Physics, 88, pp. 7162-7170,
2000.
[29]R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A.
Hoffmann, A. Madhukar, and D. Bimberg, “Carrier transfer in self-
assembled coupled InAs/GaAs quantum dots”, Physical Review B,
56, pp. 10435-10445, 1997.
[30]E. C. Le Ru, P. D. Siverns, and R. Murray, “Luminescence
enhancement from hydrogen-passivated self-assembled quantum
dots”, Applied Physics Letters, 77, pp. 2446-2448, 2000.
[31]D. I. Lubyshev, P. P. Gonzalez, E. Mareda, E. Petitprez, N.
Lascala, and P. Basmaji, “Exciton localization and temperature
stability in self-organized InAs quantum dots”, Applied Physics
Letters, 68, pp. 205-207, 1996.
[32]L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi,
F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri,
and S. Franchi, “Thermally activated carrier transfer and
luminescence line shape in self-organized InAs quantum dots”,
Applied Physics Letters, 69, pp. 3354-3357, 1996.
[33]W. Yang, R. R. Lowe-Webb, H. Lee, and P. C. Sercel, “Effect of
carrier emission and retrapping on luminescence time decays in
InAs/GaAs quantum dots”, Physical Review B, 56, pp. 13314-13320,
1997.
[34]Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, and J.
Z. Xu, “Carrier relaxation and thermal activation of localized
excitons in self-organized InAs multilayers grown on GaAs
substrates”, Physical Review B, 54, pp. 11528-11531, 1996.
[35]W. H. Jiang, X. L. Ye, B. Xu, H. Z. Xu, D. Ding, J. B. Liang,
and Z. G. Wang, “Anomalous temperature dependence of photo-
luminescence from InAs quantum dots”, Journal of Applied
Physics, 88, pp. 2529-2532, 2000.
[36]D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S.
Kyono, “Phonon broadening of excitons in GaAs/AlxGa1-xAs quantum
wells”, Physical Review B, 51, pp. 16785-16789, 1995.
[37]S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizz, P. Frigeri
and S. Franchi, “Carrier thermal escape and retrapping in self-
assembled quantum dots”, Physical Review B, 60, pp. 8276-8283,
1999.
[38]E. C. Le Ru, J. Fack, and R. Murray, “Temperature and excitation
density dependence of the photoluminescence from annealed
InAs/GaAs quantum dots”, Physical Review B, 60, pp. 245318-1-
245318-12, 2003.
[39]K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, “Emission from
discrete levels in self-formed InGaAs/GaAs quantum dots by
electric carrier injection: Influence of phonon bottleneck”,
Applied Physics Letters, 68, pp. 3013-3015, 1996.
[40]K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, and P. M.
Petroff, “Carrier relaxation and electronic structure in InAs
self-assembled quantum dots”, Physical Review B, 54, pp. 11346-
11353, 1996.
[41]S. Sanguinetti, K. Watanabe, T. Tateno, M. Wakaki, N. Koguchi,
T. Kuroda, F. Minami, and M. Gurioli, “Role of the wetting layer
in the carrier relaxation in quantum dots”, Applied Physics
Letters, 81, pp. 613-615, 2002.
[42]L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le
Roux, “Growth by molecular beam epitaxy and characterization of
InAs/GaAs strained-layer superlattices”, Applied Physics
Letters, 47, pp. 1099-1101, 1985.
[43]G. S. Solomon, J. A. Trezza, and J. S. J. Harris, “Effects of
monolayer coverage, flux ratio, and growth rate on the island
density of InAs islands on GaAs”, Applied Physics Letters, 66,
pp. 3161-3163, 1995.
[44]W. Q. Cheng, X. G. Xie, Z. Y. Zhong, L. H. Cai, Q. Huang, and J.
M. Zhou, “Photoluminescence from InAs quantum dots on GaAs
(100)”, Thin Solid Films, 312, pp. 287-290, 1998.
[45]S. Marcinkevičius and R. Leon, “Photoexcited carrier transfer in
InGaAs quantum dot structures: Dependence on the dot density”,
Applied Physics Letters, 76, pp. 2406-2408, 2000.
[46]X. Q. Zhang, S. Ganapathy, H. Kumano, K. Uesugi, and I.
Suemene, “Photoexcited carrier transfer in InGaAs quantum dot
structures: Dependence on the dot density”, Journal of Applied
Physics, 92, pp. 6813-6818, 2002.
[47]J. W. Tomm, T. Elsaesser, Y. I. Mazur, H. Kissel, G. G. Tarasov,
Z. Y. Zhuchenko, and W. T. Masselink, “Transient luminescence of
dense InAs/GaAs quantum dot arrays”, Physical Review B, 67, pp.
045326-1-045326-8, 2003.
[48]Wen-Hao Chang, Tzu-Min Hsu, Kuei-Fen Tsai, Tzer-En Nee, Jen-Inn
Chyi, and Nien-Tze Yeh, “Excitation Density and Temperature
Dependent Photoluminescence of InGaAs Self- Assembled Quantum
Dots”, Japanese Journal of Applied Physics, 38, pp. 554-557,
1999.
[49]W. Y. Wu, J. N. Schulman, T. Y. Hsu, and U. Efron, “Effect of
size nonuniformity on the absorption spectrum of a semiconductor
quantum dot system”, Applied Physics Letters, 51, pp. 710-712,
1987.
[50]H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation
dependence of photoluminescence line shape in InAs/GaAs quantum-
dot structures”, Physical Review B, 55, pp. 9757-9762, 1997.
[51]Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen,
D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, “Thermal
redistribution of photocarriers between bimodal quantum dots”,
Journal of Applied Physics, 90, pp. 1973-1976, 2001.
[52]K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, “Phonon
bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by
electroluminescence and time-resolved photoluminescence”,
Physical Review B, 54, pp. R5243-R5246, 1996.
[53]F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M.
H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions
and carrier relaxation in self assembled InAs/GaAs quantum
dots”, Journal of Applied Physics, 80, pp. 4019-4026, 1996.
[54]S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time- esolved
studies of annealed InAs/GaAs self-assembled quantum dots”,
Physical Review B, 63, pp. 155313-1-155313-6, 2001.
[55]H. Jiang and J. Singh, “Nonequilibrium distribution in quantum
dots lasers and influence on laser spectral output”, Journal of
Applied Physics, 85, pp. 7438-7442, 1999.
[56]Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H.
H. Lin, “Temperature dependence of photoluminescence spectra in
InAs/GaAs quantum dot superlattices with large thicknesses”,
Journal of Applied Physics, 82, pp. 4489-4492, 1997.
[57]Y. I. Mazur, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, and H.
Kissel, “Photoluminescence study of carrier transfer among
vertically aligned double-stacked InAs/GaAs quantum dot layers”,
Applied Physics Letters, 81, pp. 2469-2471, 2002.
[58]T. E. Nee, Y. F. Wu, and R. M. Lin, “Effect of carrier hopping
and relaxing on photoluminescence line shape in self-organized
InAs quantum dot heterostructures”, Journal of Vacuum Science
and Technology, 23, pp. 954-958, 2005.
[59]Motlan and E. M. Goldys, “Photoluminescence of multilayer
GaSb/GaAs self-assembled quantum dots grown by metalorganic
chemical vapor deposition at atmospheric pressure”, Applied
Physics Letters, 79, pp. 2976-2978, 2001.
[60]Y. Chen, G. P. Kothiyal, J. Singh, and P. K.
Bhattacharya, “Absorption and photoluminescence studies of the
temperature dependence of exciton life time in lattice-matched
and strained quantum well systems”, Superlattices and
Microstructures, 3, pp. 657-664, 1987.
[61]J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Coherent
resonant tunneling time and velocity in finite periodic
systems”, Physical Review B, 71, pp. 125317-1-125319-6, 2005.
[62]H. Zhao, S. Wachter, and H. Kalt, “Effect of quantum confinement
on exciton-phonon interactions”, Physical Review B, 66, pp.
085337-1-085337-5, 2002.
[63]G. Ortner, D. R. Yakovlev, M. Bayer, S. Rudin, T. L. Reinecke,
S. Fafard, Z. Wasilewski, and A. Forchel, “Temperature
dependence of the zero-phonon linewidth in InAs/GaAs quantum
dots”, Physical Review B, 70, pp. 201301-1-201301-4, 2004.
[64]S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent
exciton linewidths in semiconductors”, Physical Review B, 42,
pp. 11218-11231, 1990.
[65]S. Rudin and T. L. Reinecke, “Temperature-dependent exciton
linewidths in semiconductor quantum wells”, Physical Review B,
41, pp. 3017-3027, 1990.
[66]M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, and D.
Bimberg, “Ultranarrow Luminescence Lines from Single Quantum
Dots”, Physical Review Letters, 74, pp. 4043-4046, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top