跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉文瑋
研究生(外文):Yeh Wen-Wei
論文名稱:高介電常數材料三氧化二釔在奈米微晶粒記憶體之物性及電性研究
論文名稱(外文):Study of Physical and Electrical Properties of High-k Y2O3 Nanocrystal Memory
指導教授:潘同明
指導教授(外文):Pan Tung-Ming
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:58
中文關鍵詞:微晶粒浮停閘三氧化二釔
外文關鍵詞:nanocrystalfloating gateY2O3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統浮停閘結構的快閃記憶體,當元件的穿隧氧化層厚度小於10奈米時,原本儲存在複晶矽浮停閘的電荷,很容易因為在氧化層的缺陷,形成漏電路徑,造成原本儲存的資料流失。因此SONOS結構的記憶體元件,被提出是可以解決當元件尺寸縮小時,浮停閘結構所面對的問題。傳統SONOS結構的記憶體元件,是使用氮化矽作為電荷陷捕層,在此種結構內,因為電荷是被儲存在分離式的陷捕位置中,故可改善在浮停閘結構中對於資料保存性的問題。但是因為氮化矽與穿隧氧化層之間的導電帶位能差太低,會使得元件的寫入、抹除速度降低,因此使用高介電常數材料作為SONOS結構的陷捕電荷層,目前正被廣泛研究著。
一般沉積高介電常數材料的方法有許多種,如:原子層沉積法、溶膠-凝膠法、金屬有機沉積法,但是上述的方法所需要的成本相當昂貴。而在本篇論文中則提出了使用物理氣象沉積法(濺鍍)來沉積高介電常數材料作為奈米微晶粒結構的陷捕電荷層的方法。物理氣象沉積法(濺鍍)相較於其他方法而言的優點在於成本較便宜,而且可輕易的混合兩種或三種的高介電常數材料。
在本篇論文的第二章中,我們使用物理氣象沉積法(濺鍍)製作記憶體電容用純釔作為前驅物來製備三氧化二釔薄膜。藉由物理氣象沉積法(濺鍍)在穿隧氧化層上沉積,再經過不同溫度的快速熱退火形成三氧化二釔薄膜作為奈米微晶粒結構的陷捕電荷層。由論文中的物性分析可得知,經過了700度的快速熱退火後,確實已形成了三氧化二釔奈米微晶粒薄膜。而電性方面則顯示出用物理氣象沉積法(濺鍍)沉積的高介電常數材料陷捕電荷層是具有儲存電子的記憶體元件的特性,如:快速的寫入/更大的記憶窗口……等優點。
在本論文的第三章中,我們使用物理氣象沉積法(濺鍍)用純釔作為前驅物來製備三氧化二釔薄膜的記憶體元件。藉由物理氣象沉積法(濺鍍)在穿隧氧化層上沉積,再經過700度的快速熱退火形成三氧化二釔薄膜作為奈米微晶粒結構的陷捕電荷層。從論文中的TEM圖可看出,經過了快速熱退火步驟後,在陷捕電荷層中形成了奈米微晶粒。而元件的電性也比之前的SONOS的元件,展示了更大的記憶窗口、較好的電荷保存能力。這項特性應與高介電常數材料奈米微晶粒具有比單一的高介電常數材料具有較多的陷捕電荷位置有關。我們相信物理氣象沉積法(濺鍍)是一種簡單、快速且低成本,可以應用在沉積高介電常數材料作為奈米微晶粒結構的快閃記憶體的方法。
在本論文的第四章中,我們也使用物理氣象沉積法(濺鍍)用純釔作為前驅物來製備三氧化二釔薄膜的記憶體元件。藉由物理氣象沉積法(濺鍍)在穿隧氧化層上沉積,再經過700度的快速熱退火。同時,我們將三氧化二釔在快速熱退火處理中通入不同氣體,分別是氮氣、氧氣及氧化二氮形成三氧化二釔薄膜的奈米微晶粒。我們會透過物性分析比較通入這三種氣體後的化學組成。並以此對元件特性進行分析。
In the traditional floating gate Flash memory structure, when the tunneling oxide is below 10nm, the storage charge in the poly-silicon floating gate is easy to leak due to the defects in the tunneling oxide. The SONOS structure is proposed to solve this problem of floating gate structure when the device is scaling down. In conventional SONOS memory device, the charge trapping layer is silicon nitride and the storage charge is trapped in the discrete traps and this can improve the data retention problem of the floating gate structure. But in the traditional SONOS memory, the conduction band offset between tunneling oxide and silicon nitride is so small and this will slower the program speed. So using high-k dielectrics to replace traditional silicon nitride has been widely studied.
Traditional high-k thin films have been prepared by atomic layer deposition (ALD), sol-gel spin coating method, and metal-organic chemical vapor deposition (MOCVD). But the cost of these methods is very high. In this thesis, we propose using physical vapor deposition like sputter (PVD) to deposit the high-k dielectrics as charge trapping layer of the SONOS-type memory. The advantages of the physical vapor deposition like sputter (PVD) are lower cost than other methods and easy to synthesize two or three different high-k dielectrics.
In the chapter 2, we used physical vapor deposition sputter method to fabricate memory capacitor with pure yttrium as precursor to deposit Y2O3 thin film. The thin film deposited on the tunneling oxide by sputter method, and followed by various temperature rapid thermal annealing to form Y2O3 nanocrystal thin film as charge trapping layer. From the physical characteristics, the Y2O3 thin film has actually been formed after 700oC rapid thermal annealing. The memory characteristics of the physical vapor deposition sputtered high-k nanocrystal: fast program, larger memory window have been shown from the electrical data.
In the chapter 3, we used physical vapor deposition sputter method to fabricate memory device with pure yttrium as precursor to deposit Y2O3 thin film. The thin film deposited on the tunneling oxide by sputter method, and followed by 700oC rapid thermal annealing to form Y2O3 nanocrystal thin film as charge trapping layer. From the TEM image, the nanocrystals have been formed after 700oC rapid thermal annealing. This Y2O3 nanocrystal showed the larger memory window and better charge retention ability than SiN charge trapping layer. This is due to there are more trapping sites in the high-k nanocrystal. We think sputter method is a simple, fast, and low cost method to apply for high-k nanocrystal deposition of flash memory.
In the chapter 4, we also used physical vapor deposition sputter method to fabricate memory device with pure yttrium as precursor to deposit Y2O3 thin film. The thin film deposited on the tunneling oxide by sputter method, and followed by 700oC rapid thermal annealing. At the same time, the samples were subject to rapid thermal annealing through N2 / N2O / O2 different gas to form the Y2O3 nanocrystal. We analyzed through the physical analysis to compare the chemical composition of the Y2O3 nanocrystal thin film with different post-deposition annealing gas. And then, we discussed annealing gas effect on the performance of high-k Y2O3 flash memory.
Contents

Acknowledge..............................................................................................I
Abstract (Chinese)..................................................................................III
Abstract (English)................................................................................VIII
Contents………………………………………………………………...IX
Figure & Table Captions………………………………….………......XII
Chapter 1 Introduction……………………........................................1
1-1 Evolution of Flash Memory..................................................................1
1-2 Motivation............................................................................................4
1-3 Thesis Organization..............................................................................5

Chapter 2 Physical and Electrical properties of High-k Y2O3 Nanocrystal Memory Capacitor............................................................10
2-1 Introduction .......................................................................................10
2-2 Experimental.......................................................................................10
2-3 Results and Discussion.......................................................................11
2-3.1 Physical Characteristics.................................................................11
2-3.1.1 Atomic Force Microscopy (AFM) analysis............................11
2-3.1.2 X-ray photoelectron spectroscopy (XPS) analysis.................11
2-3.2 Electrical Characteristics...............................................................12
2-3.2.1 C-V curves analysis................................................................12
2-4 Summaries..........................................................................................13

Chapter 3 Physical and Electrical properties of High-k Y2O3 Nanocrystal Memory Device…..............................................................21
3-1 Introduction........................................................................................21
3-2 Experimental.......................................................................................22
3-3 Results and Discussion.......................................................................23
3-3.1 Electrical Characteristics...............................................................23
3-3.1.1 Id-Vg Curve............................................................................23
3-3.1.2 Program/Erase Speed.............................................................24
3-3.1.3 Data Retention Characteristics...............................................24
3-3.1.4 Endurance Characteristics......................................................25
3-3.1.5 Disturbance Measurement......................................................25
3-3.1.6 Characteristics of two-bit operation.......................................26
3-3.2 Physical Characteristics.................................................................27
3-4 Summaries..........................................................................................27

Chapter 4 Annealing Gas Effect on the Performance of High-k Y2O3 Nanocrystal Memory Device….............................38
4-1 Introduction........................................................................................38
4-2 Experimental.......................................................................................39
4-3 Results and Discussion.......................................................................40
4-3.1 Electrical Characteristics...............................................................40
4-3.1.1 Program/Erase Speed..............................................................40
4-3.1.2 Data Retention Characteristics...............................................40
4-3.1.3 Endurance Characteristics......................................................41
4-3.1.4 Disturbance Measurement......................................................41
4-3.2 Physical Characteristics.................................................................42
4-3.2.2 X-ray photoelectron spectroscopy (XPS) analysis.................42
4-4 Summaries..........................................................................................43

Chapter 5 Conclusions..............................................................................................52
Reference..................................................................................................54
Reference

[1]. R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Proc. of the IEEE, 91, 489 (2003).
[2]. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proc. of the IEEE, 85, 1248(1997).
[3]. S.M. Sze, “Physics of Semiconductor Devices, 2nd Edition”, John Wiley & Sons.
[4]. B. D. Salvo, C. Gerardi, R. V. Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, T. Serafino, G. Ammendola, M. V. Duuren, P. Goarin, W. Y. Mei, K. V. D. Jeugd, H. Baron, M. Gély, P. Mur, and S. Deleonibus, IEEE Trans. Device and Materials Reliability, 4, 377 (2004).
[5]. Y.N. Tan, W.K. Chim, B.J. Cho, and W.K. Choi, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer,” IEEE Trans. Electron Devices, vol. 51, pp. 1143-1147, July 2004.
[6]. J. Blauwe, “Nanocrystal nonvolatile memory devices,” IEEE Trans. Nanotechnol., vol. 1, pp. 72–77, 2002.
[7]. D.-W. Kim, T. Kim, and S. K. Banerjee, “Memory characterization of SiGe quantum dot flash memories with HfO2 and SiO2 tunneling dielectrics,” IEEE Trans. Electron Devices, vol. 50, pp. 1823–1829, 2003.
[8]. S. Choi, M. Cho, and H. Hwang, “Improved metal-oxide–nitride–oxide–silicon-type flash device with high-k dielectrics for blocking layer,” J. Appl. Phys., vol. 8, pp. 5408–5410, 2003.
[9]. M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, W. H. Lin, A. See, S. K. Lahiri, M. E. Loomans, P. I. Raisanen, and T. Gustafsson, “Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition,” Appl. Phys. Lett., vol. 68, pp. 4218–4220, 2002.
[10]. S. G. Park, Y. K. Lee, S. B. Kang, H. S. Jung, S. J. Doh, J.-H. Lee, J. H. Choi, G. H. Kim, G. H. Choi, U. I. Chung, and J. T. Moon, “Performance improvement of MOSFET with HfO2-Al2O3 laminate gate dielectric and CVD-TaN metal gate deposited by TAIMATA,” in IEDM Tech Dig., vol. 2003, pp. 327–330.
[11]. S. C. Choi, M. H. Cho, S. W. Whangbo, C. N. Whang, S. B. Kang, S. I. Lee, and M. Y. Lee, "Epitaxial growth of Y2O3 films on Si (100) without an interfacial oxide layer," Appl. Phys. Lett., vol. 71, pp. 903-905, 1997.
[12]. M. H. Cho, D. H. Ko, K. Jeong, I. W. Lkyo, S. W. Whangbo, H. B. Kim, S. C. Choi, J. H. Song, S. J. Choi, and C. N. Whang, " Temperature dependence of the properties of heteroepitaxial Y O films grown on Si by ion assisted evaporation, 2 3 " J. Appl. Phys., vol. 86, pp. 198-204, 1999.
[13]. J. Robertson, “Band offsets of wide band gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, pp. 1785–1791, 2000.
[14]. J. J. Chambers and G. N. Parsons, " Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon", J. Appl. Phys., vol. 90, pp. 918-933, 2001.
[15]. H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced Gate Dielectric Materials for Sub-100 nm CMOS,” in IEDM Tech. Dig., 2002, pp. 625–628.
[16]. R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots,” IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1392–1398, Aug. 2002.
[17]. T. Baron, B. Pellissier, L. Perniola, F. Mazen, J. M. Hartmann, and G.Polland, “Chemical vapor deposition of Ge nanocrystals on SiO2,”
Appl.Phys. Lett., vol. 83, pp. 1444–1446, 2003.
[18]. Q.Wan, C. L. Lin, W. L. Liu, and T. H.Wang, “Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric,” Appl. Phys. Lett., vol. 82, pp. 4708–4710, 2003.
[19]. C. Lee, A. Gorur-Seetharam, and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: Advantages of single- and double-layer metal nanocrystals,”
IEDM Tech. Dig., 2003, pp. 557–561.
[20]. M. Takata, S.Kondoh, T. Sakaguchi, H. Choi, J.-C. Shim, H.Kurino, and M. Koyanagi, “New non-volatile memory with extremely high density metal nano-dots,” IEDM Tech. Dig., 2003, pp. 553–557.
[21]. T. Sugizaki, M. Kobayashi, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, H. Tanaka, T. Nakanishi, and Y. Nara, “Novel multi-bit
SONOS type flash memory using a high-k charge trapping layer,”
Proc. IEEE Non-Volatile Semiconductor Memory Workshop, Feb. 2003, pp. 60–61.
[22]. R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve,K. Harber, B. Hradsky, “A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory,” in IEDM Tech. Dig., 2003, pp. 601–605.
[23]. P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T.-J. King, “FinFET SONOS flash memory for embedded applications,”
in IEDM Tech. Dig., 2003, pp. 609–613.
[24]. T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer,” Proc. VLSI Symp. Tech. Dig., 2003, pp. 27–28.
[25]. M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L.
Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, “Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating gate memory devices,” Appl. Phys. Lett., vol. 79, pp. 433–435, 2001.
[26]. H. Aozasa, I. Fujiwara, A. Nakamura, and Y. Komatsu, “Analysis of Carrier Traps in Si3N4 in Oxide/Nitride/Oxide for Metal/ Oxide/Nitride/Oxide Silicon Nonvolatile Memory”, Japanese Journal of Applied Physics, Vol.38, part 1, No. 3A, pp.1441-1447, 1999.
[27]. Y. Yang, and M. H. White, “Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures”, Solid State Electronics, Vol. 44, pp.949-958, 2000.
[28]. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, Vol. 89, pp. 5243-5275, 2001.
[29]. S. C. Choi, M. H. Cho, S. W. Whangbo, C. N. Whang, S. B. Kang, S. I. Lee, and M. Y. Lee, "Epitaxial growth of Y2O3 films on Si (100) without an interfacial oxide layer," Appl. Phys. Lett., vol. 71, pp. 903-905, 1997.
[30].T. Sugizaki, M. Kobayashi, M. Ishidao, Y. Tamura, Y. Sugiyama, T. Nakanishi, H. Tanaka,” Novel multi-bit SONOS type flash memory using a high-k charge trapping layer” VLSI technology, 2003. Digest of Technical Papers. 2003 Symposium, pp.27-28, June 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 簡楚瑛(民82)。幼兒數學知識結構及其發展趨勢之文獻探討。新竹師院學報,7,17~57。
2. 游家政(民87)。建構主義取向課程設計的評析。課程與教學季刊,1(3),
3. 曾志華(民84)。淺談社會建構論在數學教育上的應用。教師之友,36(5),45~49。
4. 黃文三(民89)。從認知心理學的立場談知識的角色與後設認知。教育研究,
5. 許惠欣(民84)。我國傳統與蒙特梭利教育之幼兒數學能力比較之研究。臺南師院學報,28, 533-368。
6. 許惠欣(民84)。我國傳統與蒙特梭利教育之幼兒數學能力比較之研究。臺南師院學報,28,553-568。
7. 曹雅玲(民93)。數學教育對幼兒思維發展的意義。國教新知,51(1),
8. 張玲芬、郭津榕和朱宜芬(民92)。學齡前幼兒基本學習能力測驗的研究。幼兒保育學刊,1, 171-184。
9. 簡淑真(民87)。建構論及其在幼兒教育上的應用。課程與教學季刊,1(3),
10. 馬祖琳(民90)。幼兒數學教室對話分析研究。生活應用科技學刊,3(3),361~382。
11. 涂金堂(民88)。後設認知理論對數學解題教學的啟示。教育研究資訊,7(1),122~137。
12. 涂金堂(民87)。後設認知理論之介紹。菁莪季刊,9(4),21~25。
13. 林佩蓉(民84)。幼稚園教學實務中反應的兒童發展觀點。教育資料與研究,
14. 周淑惠(民85)。當前幼兒數學研究及其教育意涵。國民教育研究學報,2,
15. 吳貞祥(民79)。幼兒數概念的發展。國教月刊,36,13-17。