跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖國閔
研究生(外文):Kao-Ming Liao
論文名稱:以鐠氧化層和釔氧化層薄膜作為氫離子感測膜之應用與發展
論文名稱(外文):Development of praseodymium oxide and yttrium oxide sensing membranes for ISFET applications
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:70
中文關鍵詞:感測度遲滯時漂
外文關鍵詞:ISFETsensitivityhysteresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從Bergvreld提出可量測溶液中離子濃度的離子感測場效電晶體(ISFET)後,各種形式的化學感測器相繼發展。而對於ISFET的感測原理而言,site-dissociation model是最普遍為大眾接受的機制,而此機制主要是由Yates第一個提出來。而近年來,高介電質材料,例如三氧化二鋁、五氧化二鉭、二氧化鈦、三氧化鎢和二氧化鋯..等材料相繼被使用在ISFET離子感測膜的用途上,相對於氮化矽,他們也有比較高的感測度。
本篇論文我們探討以濺渡機沉積出來的三氧化二釓、三氧化二鐠和鐠鈦氧化物作為ISFET的離子感測膜。以三氧化二釓薄膜而言,我們使用多種氧氣比氬氣流量比例與不同的回火溫度沉積薄膜,找出最合適的沉積條件。經由實驗後我們發現以800°С的回火溫度與氧氣:氬氣是4:25沉積出來的三氧化二釓薄膜,會有比較高的感測度與較低的時漂現象與遲滯現象。另外就三氧化二鐠而言,為了避免水合層與鐠矽酸鹽於感測膜產生,我們在三氧化二鐠上沉積鈦並經由熱回火形成鐠鈦氧化物的介電層。我們發現鐠鈦氧化物感測膜比三氧化二鐠感測膜有比較好的感測特性。
Since Bergveld reported on ion sensitive field effect transistors (ISFETs) for measuring ion concentrations in solutions, various kinds of chemical sensors have been developed. The commonly accepted model to account for the pH sensitivity of the ISFET is the site-dissociation model, which was firstly proposed by Yates et al. Recently, high-k dielectric materials, such as Al2O3, Ta2O5, TiO2, WO3, and ZrO2 were proposed as hydrogen ion sensing membrane for pH-ISFET to replace Si3N4 membrane because of their high sensitivity performance.

In this thesis, yttrium oxide, praseodymium oxide and praseodymium titanium oxide dielectric grown using reactive RF-sputtering was investigated as sensing membrane of pH-EIS structure. We focus on the influence of O2 : Ar ratios and annealing temperatures to optimize the characteristic of Y2O3/Si-EIS. We found the optimum condition was that the annealing temperature was 800°С and the O2/Ar gas ratio was 4 : 25. It exhibited a larger sensitivity, lower drift rate, and smaller hysteresis width. Additionally, in order to avoid the generation of hydration layer of the gate insulator and reduce the formation of Pr-silicate, we deposited Ti on Pr2O3 sensing membranes and all samples were rapid thermal annealed (RTA) in O2 to form PrTixOy dielectric films. We found PrTixOy/Si-EIS structure exhibited better sensing characteristics than Pr2O3/Si-EIS structure.
Acknowledgment i
Chinese Abstract ii
English Abstract iii
Contents iv
Table & Figures Captions vi
Chapter 1 Introduction
1.1 General background……………………………………………1
1.2 EIS and ISFET……………………………………………………2
1.3 Motivation in this study……………………………………3
1.4 Organization of this thesis………………………………4
Chapter 2 Theory Description
2.1 Introduction……………………………………………………6
2.2 Site binding model……………………………………………7
2.3 EIS structure…………………………………………………11
2.4 pH-ISFET operation mechanism……………………………12
Chapter 3 Physical and Electrical Properties of Y2O3/Si EIS structure
3.1 Introduction……………………………………………………17
3.1.1 Yttrium oxide gate dielectric……………………17
3.1.2 Sputtering…………………………………………………17
3.2 Experiments………………………………………………………18
3.3 Material analysis………………………………………………19
3.3.1 XRD, XPS and AFM…………………………………………19
3.3.2 X-ray diffraction (XRD) of yttrium oxide film
analysis………………………………………………………19
3.3.3 X-ray photoelectron spectroscopy (XPS) of yttrium
oxidefilm analysis………………………………………20
3.3.4 Atomic force microscopy (AFM) of yttrium oxide film
analysis………………………………………………………21
3.4 Electrical analysis……………………………………………21
3.4.1 The C-V curve of EIS structure……………………21
3.4.2 Sensitivity of sensing membrane……………………22
3.4.3 Drift of sensing membrane……………………………23
3.4.4 Hysteresis of sensing membrane……………………24
Chapter 4 Physical and Electrical Properties of Pr2O3/Si and PrTixOy/Si EIS structure
4.1 Introduction………………………………………………………38
4.2 Experiment…………………………………………………………39
4.2.1 Praseodymium oxide…………………………………………39
4.2.2 Praseodymium titanium oxide……………………………39
4.3 Material analysis…………………………………………………………40
4.3.1 XRD of Pr2O3 and PrTixOy film analysis…………………40
4.3.2 XPS of Pr2O3 and PrTixOy film analysis…………………41
4.3.3 AFM of Pr2O3 and PrTixOy film analysis…………………42
4.4 Electrical analysis………………………………………………………43
4.4.1 Comparison of capacitance……………………………………43
4.4.2 Sensitivity of sensing membrane……………………………43
4.4.3 Drift of sensing membrane……………………………………44
4.4.4 Hysteresis of sensing membrane……………………………45
Chapter 5 Conclusions and Future Works
5.1 Conclusions……………………………………………………65
5.2 Future works……………………………………………………66
[1] P. Bergveld, IEEE Trans. Biomed. Eng. BME17, pp. 70-71, 1970.
[2] P. Bergveld, “Development, operation and application of the ion sensitive field effect transistor as a tool fro electrophysiology”, IEEE Trans. Biomed. Eng. BME-19, pp. 342, 1972.
[3] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc., Faraday Trans., 70, pp. 1807, 1974.
[4] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects”, IEEE Trans. Electron Devices, ED-26, pp. 1805, 1979.
[5] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures”, Ph.D. Thesis, Enschede, 1982.
[6] L. Bousse, H.H. Van Den Vlekkert and +N.F. De Rooij, “Hysteresis in Al2O3 gate ISFETs”, Sensors and Actuators BⅡ, pp. 103-110, 1990.
[7] B.D. Liu, Y.K. Su and S.C. Chen, “Ion-sensitive field effect transistor with silicon nitride gate for pH sensing”, Int. J. Electron, 67 (1), pp. 59-63, 1989.
[8] A.S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs”, Sensors and Actuators B, pp. 367-370, 1992.
[9] Hung-Kwei Liao, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun and Shen-Kan Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor”, Sensors and Actuators, B 65, pp. 23-25, 2000.
[10] P.R. Barabash, R.S.C. Cobbold, and W.B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect-transistors (EISFETs)”, IEEE Trans. Electron Device, 34, pp. 1271, 1987.
[11] M.N. Niu, X.F. Ding and Q.Y. Tong, “Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators, B37, pp. 13-17, 1996.
[12] C. D. Fung, P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field effect transistor”, IEEE Trans. on electron devices, vol. ED-33, No. 1, pp. 8-18, 1986.
[13] L. K. Meixner and S. Koch, “Simulation of ISFET operation based on the site-binding model”, Sensors and Actuators, B6, pp. 315-318, 1992.
[14] P. Bergveled and A. Sibbald, “Analytical and biomedical applications of ion-sensitive field-effect transistors”, Elsevier Science Publishing Company Inc., New York, 1988.
[15] H. V. D. Vlekkert, L. Bousse and N. D. Rooij, “The temperature dependence of the surface potential at the Al2O3/electrolyte interface”, J. Of Colloid and Interface Science, 122, pp. 336-345, 1988.
[16] A. Garde, J. Alderman and W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment”, Sens. & Actuat. B, 26-27, pp. 341-344, 1995.
[17] J.L. Diot, J. Joseph, J.R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems”, J. Electroanal. Chem., 193, pp. 75-88, 1985.
[18] M. Gurvitch, L. Manchanda and J.M. Gibson, Appl. Phys. Lett., 51, pp. 919, 1987.
[19] T.S. Kalkur, R. Y. kwor and C.A. Pazde Araujo, Tin Solid Films, 170, pp.185, 1989.
[20] T. Tsutsumi, Jpn. J. Appl. Phys., 9, pp. 735, 1970.
[21] W.M. Cranton, D.M. Spink, R. Stevens and C.B. Thomas, Tin Solid Films, 226, pp. 156, 1993.
[22] J.J. Chambers and G. N. Parsons, “Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon”, J. Appl. Phys., vol. 90, no. 2, pp. 918-933, 2001.
[23] C. Durand, C. Dubourdieu and C. Vallee, J. Electrochem. Soc., 152, F217, 2005.
[24] S. M. SZE, Physics of Semiconductor Devices, 2nd Edition, Central Book Company, Taipei, Taiwan, 1985.
[25] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore.
[26] A. Chin, Y. H. Wu, S. B. Chen, C. C. Lias and W. J. Chen, “High quality Ls2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10 Å”, in VLSI Tech. Dig., pp. 13-14, 2000.
[27] Y. H. Wu, M. Y. Yang, A. Chin, W. T. Chen and C. M. Kwei. IEEE Electron. Device Lett., Vol. 21, pp. 241, 2000.
[28] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, Appl. Phys. Lett., Vol. 77, pp. 130, 2000.
[29] J. A. Gupta, D. Landheer, J. P, McCaffrey and G. I. Dproule, “Gadolinium silicate gate dielectric films with sub-1.5nm equivalent oxide thickness”, Appl. Phys. Lett., vol. 78, pp. 1718-1720, 2001.
[30] S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang and H. Hwang., “Excellent Electrical characteristics of Lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and Lanthanide-doped Oxide for MOS Gate Dielectric Applications”, IEDM Tech. Dig., pp. 471-471, 2001.
[31] M. Grattarola, A. Cambiaso, S. Cendereelli and M. Tedesco, “Capacitance measurements in electrolyte insulator semiconductor (EIS) systems modified by biological materials”, Sensors and Acturators, 17, pp. 451-459, 1989.
[32] J. C. Chou and Ching-Nan Hsiao, “Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator”, Mater. Chem. Phys., 63, pp. 270-273, 2000.
[33] P. Gimmel, B. Gompf, D. Schmeiosser, H.D. Weimhofer, W. Gopel and M. Klein, “Ta2O5 gates of pH sensitive devices comparative spectroscopic and electrical studies”, Sensors and Actuators, B 17, pp. 195-202, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊