跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯松儒
研究生(外文):Sung-Ju Hou
論文名稱:研發高介電常數介電層氮化釹及氮化鉺金屬閘極薄膜於互補式金屬氧化物半導體之應用
論文名稱(外文):Development of High-k NdN Dielectrics and Metal Gate ErN films for CMOS Applications
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:63
中文關鍵詞:金屬氮化物氮化釹高介電常數介電層化合物氮化鉺氧化物
外文關鍵詞:High-KMetal NitridationNdNErNMetal Gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們本欲將氮化釹以及氮化鉺分別沉積在三氧化二釹和三氧化二鉺之薄膜上研究其特性,但是在本篇論文中我們發現氮化釹可以當作介電層薄膜且我們又看到當氮化釹薄膜沉積的同時基底的矽會和氮化釹在接面上互相反應而形成氮氧化矽的化合物,且氮氧化矽可以改善其電性。
此外,我們也第一次利用射頻濺鍍的方式調整氮的流量以沉積淡化鉺並萃取在不同氮流量中所沉積的淡化鉺金屬閘極之功函數。當氮流量由2%增加到4%的同時淡化鉺的功函數可以從3.16 eV到3.81 eV,從XRD中我們也可看到當氮流量增加到10%時所表現氮化鉺(111)的相位。
In this work, we found that NdN would be a dielectric. We observed that the formation of SiOxNy in the interface between the NdN and substrate. Silicon nitride films that contain oxygen are referred to as silicon oxynitride (SiOxNy) and combine the advantage of oxides and nitrides. Oxynitride films also have improved thermal stability, cracking resistance, and reduced film stress.
In addition, the work function of erbium (Er) was modified by nitrogen (N2) in RF-sputtering for the first time. By increasing N2 flow ratio from 2% to 4%, the work function of ErN was tuned from 3.16eV to 3.81eV. From the XRD diffraction data, ErN (111) orientation can be observed exceed 10% N2 ratio, which responsible for the work function increase of ErN film.
Acknowledgment
Chinese Abstract
English Abstract
Contents
Figure Captions
Table Captions
Chapter 1 Introduction
1.1 Background
1.2 Motivation
1.3 Organization of the Thesis

Chapter 2 The Physical Properties of Neodymium Nitride
2.1 Introduction
2.2 Experiments
2.3 Results and Discussion
2.3.1 X-ray diffraction (XRD) of neodymium nitride film analysis
2.3.2 X-ray photoelectron spectroscopy (XPS) of NdN film analysis
2.3.3 AFM of the different flow ratio NdN
2.4 Summary

Chapter 3 The Characteristic of Neodymium Nitride Film MOSCAP
3.1 Introduction
3.2 Experiments
3.3 Results and Discussion
3.3.1 C-V and J-V characteristics of MOSCAP with NdN gate dielectric using various Ar/N2 ratios
3.4 Summary

Chapter 4 The Characterization of Erbium Nitride Thin Film
4.1 Introduction
4.2 Experiments
4.3 Results and Discussion
4.3.1 Nitrogen effect on work function modification
4.3.2 Crystal orientation effect on work function
4.3.3 AFM of the different flow ratio ErN
4.4 Summary

Chapter 5 Conclusions and Future Works
5.1 Conclusions
5.2 Future works

Reference
[1]Semiconductor Industry Association (SIA), The National Technology
Roadmap for Semiconductos.
[2]C. S. Kang, H. J. Cho, Y. H. Kim, R. Choi, K. Onishi, A. Shahriar, and J. C. Lee, J. Vac. Sci. Technol. B vol. 21, pp. 2026, 2003.
[3]Y. H. Kim, C. H. Lee, T. S. Jeon, W. P. Bai, C. H. Choi, S. J. Lee, L. Xinjian, R. Clarks, D. Roberts, and D. L. Kwong, “High Quality CVD TaN Gate Electrode for Sub-100nm MOS Device,” in IEDM Tech. Dig., 2001, pp. 667.
[4]J. Pan, C. Woo, M. Ngo, J. Xie, D. Matsumoto, D. Murthy, J. S. Goo, Q. Xiang, and M. R. Lin, “The effect of annealing temperatures on self-aligned replacement (damascene) TaCN-TaN-stacked gate pMOSFETs,” IEEE Trans. Electron Devices, vol. 51, pp. 581-586, 2004.
[5]H. Wakabayashi, Y. Saito, K. Takeuchi, T. Mogami, and T. Kunio, “A Dual-metal gate CMOS technology using nitrogen-concentration-controlled TiNx film,” IEEE Trans. Electron Devices, vol. 48, pp. 2363-2369, 2001.
[6]J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, “On the thermal stability of atomic layer deposited TiN as gate electrode in MOS device,” IEEE Trans. Electron Devices, vol. 24, pp. 550, 2003.
[7]G. Sjöblom, L. Pantisano, T. Schram, J. Olsson, V. Afanas’ev and M. Heyns, “Metal gate work function extraction using Fowler-Nordheim tunneling techniques,” Microelectron. Eng., vol.80, pp. 280-283, 2005.
[8]K. Choi, H. N. Alshareef, H. C. Harris, H. Luan, Y. Senzake, P. Lysaght, P. Majhi, and B. H. Lee, “Effective work function modification of atomic-layer-deposited-TaN film by capping layer,” Appl. Phys. Letts., vol. 89, pp. 032113, 2006.
[9]C. Ren, D. S. Chan, Faizhal B. B. , M. F. Li, Y. C. Yeo, A. D. Trigg, A.
Agarwal, N. Balasubramanian, J. S. Pan, P. C. Lim, and D. L. Kwong, “Lanthanide-Incorporated Metal Nitrides with Tunable Work Function and Good Thermal Stability for NMOS Devices” VLSI Dig. , pp. 42-43, 2005.
[10]Y. C. Yeo, T. J. King, and Chenming Hu, “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology,” Appl. Phys. Letts., vol. 92, no. 12, pp. 7266-7271, 2002.
[11]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-K Gate Dielectric: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, 2001.
[12]E. A. Chowdhury, J. Kolodzey, J. O. Olowolafe, G. Qiu, G. Katulka, D.
Hits, M. Dashiell, C. P. Swann and K. M. Unruh, “Thermally oxidized AlN thin films for device insulators,” Appl. Phys. Letts., vol. 70, no. 20, pp. 2732-2734, 1997
[13]X. Guo and T. M. Ma, “Tunneling Leakage Current in Oxynitride: Dependence on Oxygen/Nitrogen Content,” IEEE Electron Device Lett., vol. 19, pp. 207, 1998.
[14]R. Hayakawa, T. Yoshimura, A. Ashida, H. Kitahata, M. Yuasa, and N. Fujimura, “Formation of Silicon Oxynitride Films with Low Leakage Current Using N2/O2 Plasma near Atmospheric Pressure,” Jpn. J. Appl. Phys., Part1, vol. 43, pp. 7853, 2004.
[15]C. G. Parker, G. Lucovsky, and J. R. Hauser, “Ultrathin Oxide-Nitride Gate Dielectric MOSFET’s,” IEEE Electron Device Lett., vol. 19, pp. 106, 1998.
[16]K. Ohtsubo, Y. Saito, M. Hirayama, S. Sugawa, H. Aharoni, and T. Ohmi, “Low-Temperature Growth (400°C) of High-Integrity Thin Silicon-Oxynitride Films by Microwave-Excited High-Density Kr-O2-NH3 Plasma,” IEEE Trans. Plasma Sci., vol. 32, pp. 1744, 2004.
[17]S. J. Wrazien, Y. Zhao, J. D. Krayer, and M. H. White, “Characterization of SONOS oxynitride nonvolatile semiconductor memory devices,” Solid-State Electron., vol. 47, pp. 885, 2003.
[18]K. Worhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon Oxynitride A Versatile Material for Integrated Optics Applications,” J. Electrochem, Soc., vol. 149, pp. F85, 2002.
[19]R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, G. Horst, I. Massarek, and B. J. Offrein, “Silicon Oxynitride Layers for Optical Waveguide Application,” J. Electrochem, Soc., vol. 147, pp. 2237, 2000.
[20]R. M. De Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon Oxynitride Planar Waveguiding Structures for Application in Optical Communication,” IEEE J. Sel. Top. Quantum Electron, vol. 4, pp. 930, 1998.
[21]J. J. Chambers, and G. N. Parsons, “Physical and Electrical
Characterization of Ultrathin Yttrium Silicate Insulators on Silicon,” J. Appl, Phys., vol. 90, no. 2, pp. 918-933, 2001.
[22]H. Yang et al., “Integration of ultrathin (1.6~2.0 nm) RPECVD oxynitride gate dielectrics into dual poly-Si gate submicron CMOSFETs,” in IEDM Tech. Dig., 1999, pp. 245.
[23]S. V. Hattangady et al., “Ultrathin nitrogen-profile engineered gate dielectric films,” in IEDM Tech. Dig., 1996, pp. 495.
[24]D. L. Kwong et al., “Improved reliability characteristics of submicrometer nMOSFET’s with oxynitride gate dielectric pepared by rapid thermal oxidation in N2O,” IEEE Electron Device Lett., vol. 12, pp. 495, 1991.
[25]D. L. Kwong et al., “MOS characteristics of ultrathin NO grown oxynitrides,” IEEE Electron Device Lett., vol. 15, no 10, pp. 421, 1994.
[26]C. H. Liu et al., “Mechanism and Prcoess Dependence of Negative Bias Temperature Instability (NBTI) for pMOSFETs with Ultrathin Gate Dielectrics,” in IEDM Tech. Dig., 2001, pp. 861.
[27]J. F. Moulder, F. S. William, P. E. Sobol, D. B. Kenneth, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992.
[28]R. P. Vasquez, M. H. Hecht, F. J. Grunthaner, M. L. Naiman, “X-ray photoelectron spectroscopy study of the chemical structure of thermally nitrided SiO2,” Appl. Phys. Lett., vol. 44, pp. 969, 1984.
[29]M. G. Hussein, K. Worhoff, G. Sengo, A. Driessen, “Optimization fo plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications,” Thin Solid Films, vol. 551, pp. 3779-3786, 2007.
[30]E. Josse and T. Skotnicke, “Polysilicon gate with depletion-or-metallic gate with buried channel: what evil worse?,” in IEDM Tech. Dig., 1999, pp. 661-664.
[31]Y. C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K. J. Yang, I. Polishchuk, T. J. King, C.Hu, S. C. Song, H. F. Luan, and D. L. Kwong, “Dual-Metal Gate COMS Technology with Ultrathin Silicon Nitride Gate Dielectric.” IEEE Electron Device Lett., vol. 22, pp. 227, 2001.
[32]B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitziff, and J. C. Woo, “The Impact of High-k Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s,” IEEE Trans. Electron Devices, vol. 46, pp. 1537, 1999.
[33]T. Hori, Gate Dielectric and MOS VLSIs, Berlin, 1997, pp. 55, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top