跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余德益
研究生(外文):Te-Yi Yu
論文名稱:發展高介電係數材料應用在快閃記憶體的電荷補陷層
論文名稱(外文):Development of High-k Dielectrics as Trapping Layer for Flash Memory Applications
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:96
中文關鍵詞:高介電係數材料快閃記憶體資料保持矽化物
外文關鍵詞:high-k dielectricflash memorydata retentionSilicate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中利用高介電係數材料作為快閃記憶體的電荷補陷層,這些高介電係數材料包括三氧化二鐠、鐠鈦氧化物、三氧化二釹、釹鈦氧化物。本篇論文中會針對快閃記憶體的電性及物性分析進行探討。在電容元件的製程中,我們在沈積完高介電係數材料後,再將沈積好的薄膜進行快速熱退火處理,經由快速熱退火處理可提升電荷補陷層的電荷補陷密度及提升資料保持能力。我們將三氧化二鐠、鐠鈦氧化物在快速熱退火處理中通入氧氣及氧化氮,我們會透過物性分析比較通入這兩種氣體後的化學組成。而在沈積完三氧化二釹及釹鈦氧化物後,接著在進行快速熱退火處理時通入氧氣,並對此薄膜特性進行分析。
我們在完成快閃記憶體電容結構後,進行電性及物性分析,可證明這些高介電係數材料是適合做為快閃記憶體的電荷補陷層。第一,這些以高電介電係數材料作為電荷補陷層的元件有良好的遲滯特性。其中,以鐠鈦氧化物做為電荷補陷層的元件有約10v的遲滯電壓。第二,高電介電係數材料作為電荷補陷層的元件有較快的寫入速度。其中在寫入電壓為12V時及寫入時間為1ms時,以鐠鈦氧化物作為電荷補陷層的元件約有3V的平帶電壓漂移,而以釹鈦氧化物作為電荷補陷層的元件約有4.7V的平帶電壓漂移。第三,這些以高電介電係數材料作為電荷補陷層的元件有良好的電荷保持特性。其中,以鐠鈦氧化物作為電荷補陷層的元件在寫入後並於室溫下置放104秒後,其電荷損失比約為5%,於85℃下置放 104秒後其電荷損失比約為10%。以釹鈦氧化物做為電荷補陷層的元件在寫入後並於室溫下置放104秒後,其電荷損失比約為3%,於85℃下置放 104秒後其電荷損失比約為11%。
In this thesis, we proposed the fabrication of flash memory MIS device with high-k dielectrics as trapping layer. Various different high-k material trapping layers were used in this experiment, including the Pr2O3, PrTixOy, Nd2O3 and NdTixOy. We analyze the physics and electrical properties of the high-k trapping layer flash memory. We applied RTA process after deposition high-k trapping layer to increase the capability of storage charge and data retention time. We would compare with properties for Pr2O3, PrTixOy films annealed in O2 and N2O ambient. We also compare the properties of Nd2O3 and NdTixOy films annealed in O2 ambient.

It was demonstrated that the fabricated high-k trapping layer memories exhibited good performance. First, the large hysteresis window was shown in the MIS device with four different trapping layers. The flash memory device with PrTixOy as trapping layer has a hysteresis window of 10V when sweep range was ±15V. Second, these samples would have the high programming speed. The flash memory device with PrTixOy and NdTixOy as trapping layer has a flat band voltage shift of 3V and 4.7V when applied gate voltage was 12V for 1ms. Third, it present excellent data retention capability for those materials applied to flash memory as trapping layer. PrTixOy charge trapping layer after annealing in O2 ambient at 800 ˚C exhibited a lower charge loss of 5% and 10% after 104-s at room temperature and 85 ˚C, respectively. NdTixOy charge trapping layer after annealing in O2 ambient at 800 ˚C exhibited a lower charge loss of 3% and 11% after 104-s at room temperature and 85 ˚C, respectively.
Acknowledgment i
Chinese Abstract ii
English Abstract iv
Contents vi
Figure Captions ix
Table Captions xviii
Chapter 1 Introduction
1.1 General Background………………………………………………1
1.2 Advantages of using high-k materials……………………2
1.3 Motivation……………………………………………………………5
1.4 Thesis Organization………………………………………………5

Chapter 2 The physical and electrical characteristics of praseodymium oxide
2.1 Introduction………………………………………………9
2.2 Experiments…………………………………………………9
2.3 X-ray photoelectron spectroscopy (XPS) of Praseodymium Oxide film analysis…………………………………………………………………10
2.4 X-ray diffraction (XRD) of praseodymium oxide film analysis…………………………………………………………………………12
2.5 Atomic Force Microscopy (AFM) of praseodymium oxide film analysis…………………………………………………………………………14
2.6 Electrical characteristics of praseodymium oxide as
trapping layer…………………………………………………………………14
2.7 Summary………………………………………………………………………18

Chapter 3 The physical and electrical characteristics of praseodymium titanium oxide
3.1 Introduction………………………………………………38
3.2 Experiments…………………………………………………38
3.3 X-ray photoelectron spectroscopy (XPS) of praseodymium titanium oxide film analysis……………………………………………39
3.4 X-ray diffraction (XRD) of praseodymium titanium oxide film analysis………………………………………………………………41
3.5 Atomic Force Microscopy (AFM) of praseodymium titanium oxide film analysis…………………………………………………………42
3.6 Electrical characteristics of praseodymium titanium oxide as trapping layer…………………………………………………………43
3.7 Summary………………………………………………………………45

Chapter 4 The physical and electrical characteristics of Neodymium oxide
4.1 Introduction…………………………………………………………62
4.2 Experiments……………………………………………………………62
4.3 X-ray photoelectron spectroscopy (XPS) of neodymium Oxide film analysis………………………………………………………………………63
4.4 X-ray diffraction (XRD) of neodymium oxide film analysis………………………………………………………………………65
4.5 Electrical characteristics of neodymium oxide as
trapping layer……………………………………………………………66
4.6 Summary…………………………………………………………………68

Chapter 5 The physical and electrical characteristics of neodymium titanium oxide
5.1 Introduction…………………………………………………………78
5.2 Experiments……………………………………………………………78
5.3 X-ray photoelectron spectroscopy (XPS) of neodymium titanium Oxide film analysis ……………………………………………………79
5.4 X-ray diffraction (XRD) of neodymium titanium oxide
film analysis……………………………………………………………81
5.5 Electrical characteristics of neodymium titanium oxide as
trapping layer………………………………………………………………82
5.6 Summary……………………………………………………………………83

Chapter 6 Conclusion and Future work
6.1 Conclusion………………………………………………………………91
6.2 Future work………………………………………………………………92
Reference…………………………………………………………………………93
[1] H. Aozasa, I. Fujiwara, A. Nakamura and Y. Komatsu, “Analysis of Carrier Traps in Si3N4 in Oxide/Nitride/Oxide for Metal/Oxide/Nitride/Oxide Silicon Nonvolatile Memory”, Japanese Journal of Applied Physics, Vol.38, Part 1, No.3A, pp.1441-1447, 1999.
[2] Y.Yang and M.H.White, “Charge retention of scaled SONOS nonvolatile memory
devices at elevated temperatures”, Solid State Electronics, Vol. 44, pp.949-958, 2000.
[3] Sangmoo Choi;Myungjun Cho;Hyunsang Hwanga,“Improvedmetal-oxide-nitride -oxide-silicon- type flash device with high-k dielectrics for blocking layer”, Journal of Applied Physics, Vol.94,No.8.pp.5408, 15 October 2003.
[4] Stephen J. Wrazien; Yijie Zhao;Joel D. Krayer;Marvin H. White,“Characterization of SONOS oxynitride nonvolatile semiconductor memory devices”, Solid-State Electronics,Vol.47 pp.885-891,2003.
[5] Y. Wang ;Y. Zhao;B.M. Khan;C.L. Doherty;J.D. Krayer ;M.H. White,“A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase”, Solid-State Electronics,Vol.48 pp.2031-2034, 2004.
[6] Chang-Hyun Lee,a;Sung-Hoi Hur;You-Cheol Shin;Jeong-Hyuk Choi; Dong-Gun Park ;Kinam Kim,“Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory”, Applied Physics Letters,Vol.68,pp.152908 , 2005.
[7] Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, “Over-erase phenomenon
in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer,” IEEE Trans. Electron Devices, vol. 51, no. 7, pp. 1143–1147, Jul. 2004.
[8] V. A. Gritsenko, “Design of SONOS memory transistor for terabit scale EEPROM , ” in Proc. IEEE Conf. Electron Device and Solid-State Circuits,
2003, pp. 345–348.
[9] White, M.H.; Yang Yang; Ansha Purwar; French, M.L., “A low voltage SONOS
nonvolatile semiconductor memory technology”, IEEE Transactions on Components,Packaging and Manufacturing Technology Part A, Vol. 20, pp.190-195, 1997.
[10] H.-J. Müssig ; J. Dabrowski, “Silicate layer formation at Pr2O3 / Si(001) interfaces”, Applied Physics Letters,Vol.85,No.1,5 July 2004.
[11] Raffaella Lo Nigro;Vito Raineri;Corrado Bongiorno,“Dielectric properties of Pr2O3 high-k films grown by metalorganic chemical vapor deposition on silicon”, Applied Physics Letters, Vol.83,No.1,7 July 2003.
[12] G. Lupina;T. Schroeder;J. Dabrowski; Ch.Wenger; A.U. Mane;H.-J. Müssig, “Praseodymium silicate films on Si(100) for gate dielectric applications:Physical and electrical characterization”, Journal of Applied Physics, Vol.99,pp.114109, 2006.
[13] Moon-Kyun Song;Shi-Woo Rhee, “Direct liquid injection metal organic chemical vapor deposition of Nd2O3 thin films using Tris (2,2,6,6-tetramethyl-3,5-heptanedionato)neodymium”,Thin SolidFilms,
Vol.492,pp.19-23,2005.
[14] Tung-Ming Pan;Jian-Der Lee;Wen-Wei Yeh, “Influence of oxygen content on the structural and electrical characteristics of thin neodymium oxide gate dielectrics”, Journal of Applied Physics, Vol.101,pp.024110, 2007.
[15] Tung-Ming Pan; Jian-Der Lee; Wei-Hao Shu; Tsung-Te Chen, “Structural and electrical properties of neodymium oxide high-k gate dielectrics”, Journal of Applied Physics, Vol.89,pp.232908, 2006.
[16] P. Fiorenza; R. Lo Nigro;V. Raineri;S. Lombardo;R. G. Toro;G. Malandrino;I. L. Fragalà, “From micro- to nanotransport properties in Pr2O3-based thin layers”, Journal of Applied Physics, Vol.98,pp.044312, 2005.
[17] Zhu, W.; Ma, T.P.; Tamagawa, T.; Di, Y.; Kim, J.; Carruthers, R.; Gibson, M.;
, T.; “HfO2 and HfAlO for CMOS: thermal stability and current transport “,
International Electron Devices Meeting Technical Digest, pp. 20.4.1 -20.4.4, 2001.
[18] Yu-Hsien Lin;Chao-Hsin Chien; Ching-Tzung Lin, Chun-Yen Chang; Tan-Fu Lei; “Novel two-bit HfO2 nanocrystal nonvolatile flash memory” IEEE Transactions on Electron Devices, Vol. 53, No. 4, April 2006.
[19] Yan Ny Tan, IEEE, Wai Kin Chim, IEEE, Wee Kiong Choi, IEEE, Moon Sig Joo, and Byung Jin Cho, IEEE, “Hafnium Aluminum Oxide as Charge Storage and Blocking -Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation”, IEEE Transactions on Electron Devices, Vol. 53, No. 4, April 2006.
[20] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J.Cho, “High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., 2004, pp. 889-892.
[21] S. Maikapa;P. J. Tzenga;L. S. Leea;H. Y. Leea;C. C. Wanga;P. H. Tsaib;K. S. Chang-Liaob;W. -J. Chen ;K. C. Liuc;P. R. Jenga ;M.-J. Tsaia,“High-K Hf-based charge trapping layer with A12O3 blocking oxide for high-density flash memory,” VLSI Technology, Symp. on VLSI Tech.,pp.1-2,2006.
[22] J. H. Oh; H. W. Yeom; Y. Hagimoto, K. Ono;M. Oshima; N. Hirashita;M. Nywa;A. Toriumi; A. Kakizaki,“Chemical structure of the ultrathin SiO2/Si(100) interface: An angle-resolved Si 2p photoemission study,” Physical Review B, Vol. 63, pp.205310.
[23] J. F. Moulder ;W. F. Stickle;P. E. Sobol;and K. D. Bomben; Handbook of X-ray Photoelectron Spectroscopy ,(Perkin Elmer, Eden Prairie), 1992.
[24] Akira Sakai; Shinsuke Sakashita;Mitsuo Sakashita;Yukio Yasuda; Shigeaki Zaima;Seiichi Miyazaki ,“Praseodymium silicate formed by postdeposition high-temperature annealing,”Applied Physics Letters, Vol.85,No.22,29 November 2004.
[25] B Lambert-Andront; F Sayetat ; S Auffrett ;J Pierre ;R Madar,“Phase separation and magnetic structure in praseodymium disilicide,”J.Phys.: condens. Matter , Vol.3,pp.3113-3124,1991.
[26] R. Mahapatra; N. Poolamai;S. Chattopadhyay; N. G. Wright,”Characterization of thermally oxided Ti/SiO2 gate dielectric stacks on 4H-SiC substrate,” Journal of Applied Physics, Vol.88,pp.072910, 2006.
[27] Min Li;Zhihong Zhang; Stephen A Campbell;Hong-Jyh Li ;Jeff J. Peterson,”Hafnium titanate as a high permittivity gate insulator:Electrical and physical characteristics and thermodynamic stability,” Journal of Applied Physics, Vol.101,pp.044509, 2007.
[28] Sanghun Jeon ;Hyunsang Hwanga,” Electrical and physical characteristics of PrTixOy for metal-oxidesemiconductor gate dielectric applications,” Applied Physics Letters, Vol.81,No.25,16 December 2002.
[29] ZHANG Sheng-Mao; LI Jian;WU Zhi-Shen;ZH A N G Ping-Y u; ZH A N G Zhi-Jun,”Preparation and Structural Characterization of Carboxyl-functional
Ionic Liquid surface-modified TiO2 nanoparticles,” Chemical Journal of Chinese Universities,Vol.27,No.9,pp.1615~1617, September 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top