跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏佑宇
研究生(外文):Y. Y. Wei
論文名稱:氮化銦鎵及p型摻雜氮化銦薄膜物理特性之研究
論文名稱(外文):Characterization of In1-xGaxN and p-type doped InN thin film
指導教授:張本秀
指導教授(外文):P. H. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:氮化銦富銦氮化銦鎵
外文關鍵詞:InNIn-rich InxGa1-xN
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要分三大部分,第一部分為富銦的氮化銦鎵薄膜(In1-xGaXN)樣品A、B與C,分別對應X值為0.02、0.08、0.20,我們對其變溫電子傳輸特性以及光激螢光頻譜,分析其減併電子氣金屬特性之轉變;第二部份藉由SEM、AFM分析氮極化面之氮化銦薄膜以及其超導特性之量測;第三部份則探討摻鎂的氮化銦薄膜內部特殊之n-型及p-型載子, 並藉由蕭基接面電性量測分析p-型摻雜氮化銦薄膜元件之特性。
第一部分富銦的氮化銦鎵薄膜,由載子濃度得知富銦的氮化銦鎵薄膜都存在類似金屬的特性,但是當鎵含量增加到20%則轉變成半導體的特性。由變溫PL圖形可以得知當鎵的含量越多,波長越短其相分離也越嚴重;而富銦的氮化銦鎵薄膜則是單純的紅移現象發生。當鎵的含量越多,電子遷移率越小且對溫度的敏感度下降。
第二部份氮極化面之氮化銦薄膜,由SEM及AFM圖及資訊,我們可以判斷出樣品為氮極化面還是銦極化面。其超導特性之量測,我們得到其超導臨界溫度Tc為1.8K。
第三部份p-型摻雜氮化銦薄膜元件之特性方面。我們發現氮化銦薄膜不論有無摻雜鎂,氮化銦的峰值與溫度的關係是出現單純的紅移。p-型摻雜氮化銦薄膜之載子濃度n,隨溫度遞升而半導體特性遞增;其電子遷移率則是未摻雜的氮化銦擁有較高的遷移率,且對溫度敏感性大;電導率由電子遷移率主導。根據I-V與C-V量測,氮化銦摻鎂之後的確會有p-type的氮化銦產生,且埋在一層約5nm的電子累積層之下。
This thesis focuses on three topics about the characterization of In-rich In1-xGaxN thin films and p-type doped InN thin film. The first part is the transport and optical properties of In-rich In1-xGaxN (x=0, 0.02, 0.08 and 002). The second part is the polarity properties of InN thin films and superconductivity. The third part is the interesting Mg-doped and p-type InN.
Characteristics of these In-rich In1-xGaxN thin films and p-type doped InN thin film were studied experimentally by Hall measurement and photoluminescence (PL). We demonstrated different polarity of InN thin films (In-polarity and N-polarity) by their SEM images and showed the p-type layer in Mg-doped InN thin films by InN/GaN Schottky diode structure.
Our conclusion are :
1.The InN thin films show metallic behavior with x= 0, 0.02 and 0.08. When Ga composition is up to 20%, the transport properties of InN has changed (metallic to semiconductor). The bowing parameter, b, is 2.62.
2. N-polarity InN thin film can be characterize by their SEM image and show pure superconductivity behavior with Tc = 1.7 K.
3. The metallic character changed in Mg-dopen InN thin film ( n ~ T).
4.For InN thin film and Mg-dopen InN thin film, Temperature-independent impurity scattering dominate the mobility behavior. Polar-optical phonon scattering and piezoelectric scattering can explain the Temperature- dependent mobility behavior.
5.Mg-dopen InN thin film have a p-type layer under a thin n-type charge accumulation layer by the C-V measurement.
指導教授推薦書………………………………………………………
口試委員會審書………………………………………………………
授權書…………………………………………………………………. III
誌謝……………………………………………………………………. V
中文摘要………………………………………………………………. VI
英文摘要……………………………………………………………… VII
第1章 序論……….……………………...…………….……………….1
1-1 前言………………………………………………………..……..1
1-2 氮化銦………………………...……………………….….……...2
1-2-1 氮化銦之發展……………………………………………...2
1-2-2氮化銦之特性………………………………………………2
1-3 動機………………………………………………………………6
第2章 實驗原理…………...……………………………..….….……..10
2-1 霍爾效應………………………………….…….………………10
2-1-1 典型霍爾量測………………………………….………....10
2-1-2 Van der Pauw理論…………………………………………11
2-2 光激螢光原理…………………………………….…………….12
2-3 歐姆接觸…………………………………………….……….…15
2-4 蕭基接觸………………………………………….……….……17
2-5 掃描式電子顯微鏡…………………………...……….………..19
2-6 原子力顯微鏡……………………………………….………….20
第3章 樣品成長與儀器設備………………………………………….28
3-1 樣品成長……………………………………………….……….28
3-1-1 In1-xGaxN………………….……………………….……….28
3-1-2 InN…………………………………………………………28
3-2 氮化因與氮化鎵接面之I-V、C-V量測樣品制備…….……….29
3-2-1 I-V量測儀器……………………….……………………...30
3-2-2 C-V量測儀器…………………………………………...…30
第4章 實驗結果與討論………..………….…….………….…………35
4-1 In1-xGaxN之PL量測………..……………………….………….35
4-2 In1-xGaxN之電子遷移率……………..………...……….……….37
4-3 InN樣品表面之研究…………………..…………….………….40
4-4 InN的變溫PL量測……………………………………….…….41
4-5 InN之電子遷移率…….…………………..……………….…....42
4-6 InN I-V量測…………………………………………...….…….43
4-7 InN C-V量測………………………………………………..….44
第5章 結論及展望……………………………………………………61
參考文獻………………………………………………………………..62
[1]A. G. Bhyiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779(2003).
[2]S. N. Mohammad and H. Morkoc, Prog, Quantum electron. 20, 361 (1996).
[3]S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapker, and L. F. Eastman, J. Appl. Phys. 83, 826 (1998).
[4]S. P. Fu and Y. F. Chen, Appl. Phys. Lett. 85, 1523 (2004).
[5]B. E. Foutz, S. K. O’Leary, M. S. Shur, L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).
[6]T. Inushima, 1, N. Kato, D. K. Maude, Hai Lu, W. J. Schaff, R. Tauk, Y. Meziani, S. Ruffenack, O. Briot, W. Knap, B. Gil, H. Miwa, A. Yamamoto, D. Muto, Y. Nanishi, M. Higashiwaki, and T. Matsui, phys. stat. sol. (b) 243, No. 7, 1679–1686 (2006).
[7]T. Inushima, N. Kato, T. Takenobu, M. Motokawa, M. Higashiwaki and T. Matsui, Journal of Physics: Conference Series 51 (2006) 279–282.
[8]Takashi Inushima, Science and Technology of Advanced Materials 7 (2006) S112–S116.
[9]T. Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa, Phys. Rev. B 72, 085210(2005).
[10]V. M. Naik, R. Naik, D. B. Haddad, J. S. Thakur, G. W. Auner, H. Lu and W. J. Schaff, Appl. Phys. Lett. 86, 201913 (2005).
[11]Q. X. Guo, T. Tanaka, M. Nishio, H. Ogawa, X. D. Pu, and W. Z. Shen, Appl. Phys. Lett. 86, 231913 (2005).
[12]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[13]T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
[14]M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suzuki, Phys. Status Solidi B 234, 750 (2002).
[15]C. H. Henry, J. Appl. Phys. 51 4494 (1980).
[16]R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).
[17]R. Juza and A. Rabenau, Z. Anorg. Anorg. Allg. Chem. 285, 212 (1956).
[18]T. Renner, Z. Anorg. Allg. Chem. 298, 28(1958).
[19]J. Pastrnak and L. Souckova, Phys. Status Solidi 3, K71(1963).
[20]G. V. Samsonov, Nitridy Kiev, 1969.
[21]V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
[22]T. L. Tansley and C. P. Foley, Electron. Lett. 20, 1066 (1984).
[23]C. Stampfl, C. G. Van de Walle, D. Vogel, P. Kruger, and J. Pollmann, Phys. Rev. B 61, R7846 (2000).
[24]D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002).
[25]S. P. Fu, T. J. Lin, W. S. Su, C. Y. Shieh, Y. F. Chen, C. A. Chang, N. C. Chang, and P. H. Chang, J. Appl. Phys. 99, 126102 (2006).
[26]L. F. J. Piper, T. D. Veal, C. F. McConville, Hai Lu, and W. J. Schaff. Appl. Phys. Lett. 88, 252109(2006).
[27]彭賢渠, 〝氮化銦成長及特性〞,碩士論文(2005).
[28]I. Mahboob, T. D. Veal, C. F. McConvillw, H. Lu and W. J. Schaff, PRL92, NUMBER 3 (2004).
[29]P. A. Anderson, C. H. Swartz, D. Carder, R. J. Reeves, S. M. Durbin, S. Chandril, and T. H. Myers, Appl. Phys. Lett. 89, 184104 (2006).
[30]R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Anger, E. E. Haller, H. Lu, and W. J. Schaff, PRL96, 125505(2006).
[31]S. K. Lin, K. T. Wu, c. p. Huang, C. T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, H. C. Peng, C. F. Shih, K. S. Liu, and T. Y. Lin. J. Appl. Phys. 97, 046101(2005).
[32]林士凱,〝多銦氮化銦鎵薄膜之電子傳輸特性〞,碩士論文(2005).
[33]Joseph H. Simmons and Kelly S. Potter: Optical Materials
[34]A. H. Kitai: Solid State Luminescence.
[35]Klaus D. Mielenz: OPTICAL RADIATION MEASUREMENTS, Vol.3.
[36]H. B Bebb and E. W. Williams, Semicond. Semimet.,8,4-5.(1972).
[37]H. D. Chen, M. S. Feng, P.A. Chen and et al., J. Appl. Phys. 75, 2210
[38]石正楓,”氮化鎵異質結構場效電晶體之研究”,國立交通大學碩士論文(2003).
[39]Donald A. Neamen, “Semiconductor physics and devices”,third edition, p326-p329.(2003).
[40]林峰慶,”矽基板成長之氮化鋁鎵/氮化鎵的場效電晶體之研究”,碩士論文(2006).
[41]http://elearning.stut.edu.tw/caster/3/no6/6-2.htm
[42]陳力俊,”材料電子顯微鏡學”, 中國材料科學學會(1994).
[43]唐慈濟,”鎂摻雜氮化銦鎵之成長及特性”,碩士論文(2006).
[44]S.F. Chichibu, A.C. Abare, M.S. Missky, S. Keller, S.B. Fleisher, J.E. Bowers, E. Hu, U.K. Mishra, Appl. Phys. Lett. 73(1998)2006.
[45]Y. Narukawa, Y. Kawakami, Sz. Fujita, Sg. Fujita, S. Nakamura, Phys. Rev. B 55(1997)R1938.
[46]Hadis Morkoc, ”Nitride Semiconductors and Devices”.
[47]W. J. Wang, H. Miwa, A. Hashimoto, and A. Yamaoto, Phys. Stst. Sol. (c)3, No. 6, 1519-1522(2006)/DOI 10.1002/PSSC.00565176.
[48]V. V. Mamutin, V. A. Vekshin, V. Y. Davydov, Y. A. Kudriavtsev, V. V. Emtsev, and S. V. Ivanov, Phys. Status Solidi A176,373(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top