跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳林
研究生(外文):C. L. Chen
論文名稱:矽基板之氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究
論文名稱(外文):Investigation of AlGaN/GaN High Electron Mobility Transistor on Si Substrate
指導教授:張本秀
指導教授(外文):P. H. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:氮化鋁鎵/氮化鎵高電子遷移率電晶體
外文關鍵詞:AlGaN/GaNHEMTHigh Electron Mobility Transistor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用有機化學氣相沉積成長不同結構的氮化鋁鎵/氮化鎵異質結構於藍寶石和矽基板上,利用不同的量測方式,分析探討氮化鋁鎵/氮化鎵異質結構場效電晶體在結構與特性上的比較。我們在矽基板上比較有無SiN緩衝層的結構並成長相同鋁成分的氮化鋁鎵/氮化鎵異質結構,不同的緩衝層結構會對異質介面產生不同程度的應力,發現使用氮化矽做中間層成長的樣品,其品質較佳。
為了改善閘極特性,利用氮離子佈植增加絕緣特性,可以驅使元件的操作電流限制在我們所希望的路徑,並造成元件間電性的絕緣。對氮化鋁鎵/氮化鎵高電子移導率場效電晶體做直流以及高頻特性的量測,由此我們可以得到,最大飽和電流、最大轉導、遷移率、電流增益截止頻率(fT)、功率增益截止頻率(fMAX)。
對於成長在矽基板的AlGaN/GaN異質結構電晶體而言,閘極寬度為65um,閘極長度為5um。比較在有氮化矽(SiN)成長的矽基板特性,室溫下量測到的遷移率可以增加約十倍,最大轉導約可以增加2~2.5倍,而電流增益截止頻率(fT)可以增加約4倍以上。明顯的可以看出,矽基板上成長SiN緩衝層結構對特性的改善。
Si benefits high quality, being widely available as a large-diameter, low-cost substrate and extensive utilization in the semiconductor industry. In this thesis, High-electron-mobility transistors (HEMTs) based on the GaN two-dimensional electron systems (2DES) on Si substrates have been studied. In order to reduce the stress between the GaN and Si resulting from their lattice mismatch, AlN are used as an intermediate layer.
The current density of GaN HEMT devices is coutributed by the 2DES formed by the GaN/AlGaN hetero-structures, originating from their spontaneous polarization and piezoelectric polarization. In this work, we inserted thin SiN layer to enhance the quality of the 2DES and improve a HEMT properties.
In order to improve the HEMTs isolation characteristics, we utilize nitrogen ion-implantation for isolation. It can restrict the current flowing to the desired path (under the gate in HEMT) and electrically isolate separate device from each order. Characteristics of the epi-layers and devices were studied experimentally by XRD, transport properties, multifunctional mask, TLM (transfer length method), I-V, C-V and high frequency measurements.
Comparisons of the saturated drain current density, trans- conductance, mobility, current gain cut off frequency (fT), power gain cut off frequency of operation (fMAX) between HEMTs on Si substrates with and without SiN treatment were made in this work. A same structure HEMT on sapphire substrate was also fabricated for reference. For AlGaN/GaN HEMT (with 5 um gate length and 65 um gate width).on Si substrate with SiN treatment, the mobility can be increased by more than 10 times, the maximum transconductance increased by 2~2.5 times, and the current gain cut off frequency (fT) increased more than 4 times at room temperature than the HEMTs on Si without SiN treatment. Details were discussed in this thesis.
指導教授推薦書………………………………….………………………i
口試委員會審定書………………………………………………………ii
授權書…………………………………………………………………...iii
誌謝……………………………………………………………………...iv
中文摘要…………………………………………………………………v
英文摘要……………………………………………………………...…vi
目錄……………………………………………………………………..vii
圖目錄…………………………………………………………………...ix
表目錄…………………………………………………………………..xii
第一章 序論……….……………………...…………….……………….1
1-1 前言……………………………………………………………..…...1
1-2 研究動機…………………………………………………….…..…..3
第二章 理論背景…………………………………………...…….…..…4
2-1 半導體異質結構………………………………………….…….…...4
2-2 基板與材料選擇………………………………………….………....6
2-3 極化效應………………………………………………….………....7
2-4 二維電子氣的特性…………………………………….……….…...9
2-5 蕭特基接觸…………………………………………….……….….10
2-6 歐姆接觸原理………………………………………….…………..12
第三章 實驗步驟及量測方法…………………………………………23
3-1 製程光罩………………………………………………….………..23
3-2 歐姆接觸電極製作……………………………………….………..24
3-3 金屬連線及蕭特基閘極接觸製作……………………….………..25
3-4 離子佈植………………………………………………….………..27
3-4.1 離子佈植簡介…….…………………….……………….……….27
3-4.2 氮離子佈植.…………………………….……………….……….28
3-5 量測方法….……………………………….…………….……….29
3-5.1 傳輸線模型.…………………………………………….…….….29
3-5.2 霍爾量測….…………………………………………….…….….30
3-5.3 I-V量測….……………………….…………………….…….….30
3-5.4 C-V量測………………………….…………………….…….….31
3-5.5 高頻量測…………………………………………….…….….….31
第四章 實驗結果與討論…….…..………….…….……………………39
4-1 樣品結構………….……………………………………….……….39
4-2 XED分析… ….……………………….……………….………….42
4-3 傳輸線模型(TLM)分析..…………………………………….…….46
4-4 元件特性分析…….…….…………………………………….…....48
4-4.1 離子佈植前..……………………………………………….…….48
4-4.2 離子佈植後..……………………………………………….…….52
4-4.3 變溫直流三端特性..……………………………………….…….56
4-5 I-V分析…........….…….…………………………………….…....58
4-6 C-V分析…...…….…….…………………………………….…....60
4-7 霍爾量測………….…….…………………………………….…....62
4-8 高頻量測………….…….…………………………………….…....63
第五章 結論…………….………………………………………………68
參考文獻……………………….………………………………………..69
[1] .R. Dingle, H. L, Stormer, A. C.Gossard and W. Wiexmann, Appl.
Phys., Vol. 33, p665-667,(1978).
[2] .T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Jan. J. Appl.
Phys., Vol. 19 L225-L227,(1980).
[3] .R.Dimitrov et al., Jorunal of AppliedPhysics, Vol 87, Num 7, (3375), 2000.
[4] .Hadis Morkoc et al., “GaN-based modulation doped FETs and UV detectors,”Solid-State Electronics 46, 157-202, (2002).
[5]. I.P. Smorchkova et al. Jorunal of Applied Physics, Vol 86, Num 8, (4520), (1999).
[6]. Fabio Sacconi et al., IEEE Trans. Electron Devices, VOL. 48, NO3, March (2001).
[7]. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M.Murphy, W.J.Schaff and L.F. Eastman, Jorunal of Applied Physics,Vol 85, 3222, (1999).
[8]. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K.Chu, M. Murphy,A.J. Sierakowski, W.J. Schaff and L.F. Eastman,Jorunal of Applied Physics, Vol87, 334, (2000).
[9]. C.-T. Liang, Li-Hung Lin, J. Z. Huang, Zhi-Yao Zhang, Zhe-Hau Sun, Kuang Yao Chen, N. C. Chen, P. H. Chang and Chin-An Chang, Appl. Phys. Lett. 90, 022107 ,(2007).
[10]. C.-T. Ling, K. Y. Chen, N. C. Chen, P. H. Chang, and C.-A. Chang, Appl. Phys. Lett 89,132107, (2006).
[11]. K.-T Wu, P. H. Chang, S. T. Lien, N. C. Chen, C.-A. Chang, C. F. Dhih, W. C. Lien, Y. H. Wu, S.-C. Chen, Y. H. Chang, and C.-T. Liang, PhysicaE (Amsterdam) 32, 566, (2006)
[12]. M.S. Shur and M.A. Kahn, St. Petersburg, Russia, Sep. 22-28,1996, Institute Phys. Conferrence Series, No. 155, Chapter 2, pp.25-32, M.S. Shur and R.Suris,Editors, IOP Publishing, London (1997).
[13]. F. A. Ponce, “Group III Nitride Semiconductor Compounds Physics and Applications”, pp.123-133, (1998).
[14]. Krost, A. Dadgar, A. Mater. Sci. Engi. B, 93,77 (2002).
[15]. A. Krost and A. Dadgar, Phys. Stat. 194,361 (2002).
[16]. E. A. Caridi, T. Y. Chang, K. W. Goosen, and L. F. Eastman, Appl. Phys. Lett. 56,659 (1990).
[17]. W. Q. Chen and S. K. Hark, J. Appl. Phys. 5747 (1995).
[18]. A. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81, 6332 (1997).
[19]. E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Appl. Phys. Lett. 71,2794(1997).
[20]. M. B. Nardelli, K. Rapcewicz, and J. Bernholc, Appl. Phys. Lett. 71,3135 (1997).
[21]. J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 77,250 (2000).
[22]. S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. Denbaars, and U. K. Mishra, J. Appl. Phys. 93,10114 (2003).
[23]. F.Braun, Annal. Phys. Chem. 153,556(1874).
[24]. D. K. Schroder, “Semiconductor material and device characterization”, Wiley Interscience, p.169-208, pp.133, (1998).
[25]. W. Schottky, Naturwissenschaften 26,834(1938).
[26]. S. Kurtin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 22,1434(1969).
[27]. C. M. Wolfe, N. Holonyak, and G. E. Stillman, “Physical Properties of Semiconductors”, Prentice Hall, NJ, 36(1989).
[28]. Donald A. Neamen, Semiconductor Physics & Devices, McGraw-Hill, London, (1997).
[29]. S. M. Sze, Semiconductor Device: Physics and Technology, Wiley, New York, (1985).
[30]. V. M. Burmedez, J. Appl. Phys. 80, 1190, (1996).
[31]. 石正楓,“氮化鎵異質結構場效電晶體之研究”,國立交通大學碩士論文 (2003).
[32]. 陳銘勝,“氮化鎵發光二極體製程技術之研究”,國立中央大學碩士論文 (2004).
[33]. 林柏辰,“氮化鋁鎵/氮化鎵高電子遷移率場校電晶體之製作與應用”,國立中央大學碩士論文 (2005).
[34]. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, R. A. Stall, “Ion implantation doping and isolation of B. GaN” , Appl. Phys. Lett. 67,1435,(1995).
[35]. S. C. Binari, H. B. Dietrich, G. Kelner, L.B. Rowland, K. Doverspike, D. K. Wickenden, “H,He, and N implant isolation of n-type GaN” ,J. Appl. Phys. Lett. 78,3008,(1995).
[36]. R. E. Williams, “Galliun Arsenide processing Techniques”, chapter 11, p225-253 .
[37]. A. Soltani, A. BenMoussa, S. Touati, V.Ho l, J.-C. De Jaeger, J.Laureyns, Y.Cordier, C. Marhic, M. A. Djouadi, C.Dua, Diamond & Related Materials 16, 262-266,(2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top