跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁健益
研究生(外文):Jian Yi Wong
論文名稱:鉿及釓金屬奈米點快閃記憶體在快速退火處理之研究
論文名稱(外文):Study of Hafnium(Hf) and Gadolinium (Gd) Nanocrystal Flash Memory with Rapid Thermal Annealing Treatment
指導教授:賴朝松
指導教授(外文):C.S.Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:73
中文關鍵詞:鉿金屬奈米點釓金屬奈米點
外文關鍵詞:HfGdnanocrystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
複晶矽長久以來已被當作為懸浮閘極快閃式記憶體儲存電荷的薄膜層來使用。複晶矽亦是個相當可靠的材料,而且可以完全的和CMOS 的製程流程相容。然而,複晶矽有著些許先天上的缺點,因此隨著快閃式記憶體元件的微縮下,複晶矽已經到達做為儲存電荷薄膜層的極限。
在這篇論文中,我們因應CMOS 製程的需要,分別提出二種富含鉿金屬和釓金屬的奈米點記憶體。同樣在6.5 MV/cm的電場下,鉿金屬奈米點記憶體的memory window 較釓金屬奈米點記憶體來的大。經過快速退火處理後,釓金屬奈米點記憶體的memory window並不會隨著快速退火的溫度高低而變化。但是鉿金屬奈米點記憶體的memory window卻會隨快速退火溫度上升而變小。可見釓金屬奈米點記憶體擁有極佳的熱穩定性。此兩種記憶體的寫入速度可達1 ms,抹除速度大概在5 s。釓金屬奈米點記憶體的抹除速度又較快些。記憶保留能力上,釓金屬奈米點記憶體的表現也比鉿金屬奈米點記憶體來的好。在85oC下以及相同電場的條件下,鉿金屬奈米點記憶體的電荷流失率比釓金屬奈米點記憶體要來的快。最後,不論是鉿金屬或釓金屬奈米點記憶體,都有著極佳的忍耐度特性。
Poly-silicon has been used as the charge trap/storage layer in floating gate flash memory for a long time. Poly-silicon is a very reliable material and is fully compatible with the current CMOS process flow. However, poly-silicon shows some intrinsic disadvantages and thus may not be the ultimate charge trap/storage material for scaled flash memory technology.
In this work, we propose metal-rich Hafnium (Hf) and Gadolinium (Gd) NC memory that are fully compatible with the current CMOS technologies. The memory window of Hf nanocrystal is larger than the one of Gd nanocrystal as both they are under 6.5 MV/cm. After RTA treatment, the window of Gd nanocrystal is almost the same when RTA temperature increases. The window of Hf nanocrystal will narrow after RTA temperature rise. It means Gd nanocrytal has highly robust thermal stability. The speed of program can be at 1 ms and erase at 5s. Gd nanocrystal can be erased faster. The retention characteristic of Gd nanocrystal is better than Hf nanocrystal. At 85oC, the charge loss rate of Hf nanocrystal is faster than Gd nanocrystal at the same electric field. Final, superior endurance characteristics can be found in both Hf and Gd nanocrystal.
Content
Chapter 1 Introduction
1-1 Background ………..…...……………………………………………1
1-2 Advantages of using high-k materials …...…………...……………...3
1-3 The motivation in this study...……..………………..….…………….5
1-4 Thesis Organization …………………………………….……...........5

Chapter 2 The Characterization of Hf Nanocrystal Thin Film
2-1 Introduction ………………………………………..………………...9
2-2 Experiment ……………...…………………………………………...9
2-3 Results and Discussion...…………………….………..…………….10
2.3.1 Blocking oxide 20 nm...………………………..………..…….10
2.3.2 Blocking oxide 10 nm...………………………..………..…….12
2-4 Summaries ……………………………………….….………...........13



Chapter 3 The Characterization of Gd Nanocrystal Thin Film
3-1 Introduction ……………………………….…………….………….45
3-2 Experiment ………………………………….…………….………..45
3-3 Results and Discussion……………………………………………...46
3-4 Summaries ……………………………………….…….……...........48

Chapter 4 Conclusions and Future Works
4-1 Conclusion …………….....…….…………………….….………….68
4.1.1 Hf nanocrystal ………………....……………….….………….68
4.1.2 Gd nanocrystal ………...……....……………….….………….68
4.1.3 Compare Gd nanocrystal to Hf nanocrystal ....……………….69
4-2 Future work…………………………………………………………69

Reference ……………………………………………..………….……..73
[1] K. R. Farmer, M. 0. Anderson, and 0. Engstrom, “Tunnel electron induced charge generation in very thin silicon oxide dielectrics,” Appl. Phys. Lett., vol. 60, p. 730, 1992.
[2]H. Aozasa, I. Fujiwara, A. Nakamura and Y. Komatsu, “Analysis of Carrier Traps in Si3N4 in Oxide/Nitride/Oxide for Metal/Oxide/Nitride/Oxide Silicon Nonvolatile Memory”, Japanese Journal of Applied Physics, Vol.38, Part 1, No.3A, pp.1441-1447, 1999.
[3] Y.Yang and M.H.White, “Charge retention of scaled SONOS nonvolatile memory
devices at elevated temperatures”, Solid State Electronics, Vol. 44, pp.949-958, 2000.
[4] Sangmoo Choi;Myungjun Cho;Hyunsang Hwanga,“Improvedmetal-oxide-nitride -oxide-silicon- type flash device with high-k dielectrics for blocking layer”, Journal of Applied Physics, Vol.94,No.8.pp.5408, 15 October 2003.
[5] Stephen J. Wrazien; Yijie Zhao;Joel D. Krayer;Marvin H. White,“Characterization of SONOS oxynitride nonvolatile semiconductor memory devices”, Solid-State Electronics,Vol.47 pp.885-891,2003.
[6] Y. Wang ;Y. Zhao;B.M. Khan;C.L. Doherty;J.D. Krayer ;M.H. White,“A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase”, Solid-State Electronics,Vol.48 pp.2031-2034, 2004.
[7] Chang-Hyun Lee,a;Sung-Hoi Hur;You-Cheol Shin;Jeong-Hyuk Choi; Dong-Gun Park ;Kinam Kim,“Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory”, Applied Physics Letters,Vol.68,pp.152908 , 2005.
[8] Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, “Over-erase phenomenon
in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer,” IEEE Trans. Electron Devices, vol. 51, no. 7, pp. 1143–1147, Jul. 2004.
[9] V. A. Gritsenko, “Design of SONOS memory transistor for terabit scale EEPROM , ” in Proc. IEEE Conf. Electron Device and Solid-State Circuits,
2003, pp. 345–348.
[10] White, M.H.; Yang Yang; Ansha Purwar; French, M.L., “A low voltage SONOS
nonvolatile semiconductor memory technology”, IEEE Transactions on Components,Packaging and Manufacturing Technology Part A, Vol. 20, pp.190-195, 1997.
[11] D. L. Kwong, B. H. Lee1, and G. Bersuker” Effects of ALD HfO2 thickness on
charge trapping and mobility”, Microelectronic Engineering 80 (2005) 218–221
[12] Tung-Ming Pan, Chao-Sung Liao, Hui-Hsin Hsu,” Excellent Frequency Dispersion of Thin Gadolinium Oxide High-k Gate Dielectrics”, Appl. Phys. Lett.
[13] Yan Ny Tan, IEEE, Wai Kin Chim, IEEE, Wee Kiong Choi, IEEE, Moon Sig Joo, and Byung Jin Cho, IEEE, “Hafnium Aluminum Oxide as Charge Storage and Blocking -Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation”, IEEE Transactions on Electron Devices, Vol. 53, No. 4, April 2006.
[14] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J.Cho, “High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., 2004, pp. 889-892.
[15] Yu-Hsien Lin, Chao-Hsin Chien, Ching-Tzung Lin, Chun-Yen Chang,and Tan-Fu Lei“High-Performance Nonvolatile HfO2 Nanocrystal
Memory“,IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 3, MARCH 2005
[16] Jong Jin Lee and Dim-Lee Kwong,” Metal Nanocrystal Memory With High-_ Tunneling Barrier for Improved Data Retention” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 4, APRIL 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文