跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王方伶
研究生(外文):Fang-Ling Wang
論文名稱:以視覺雙路徑模式探討雙癱型腦性麻痺兒童之視知覺特質:行為與腦電生理研究
論文名稱(外文):Exploring the characteristics of visual perception in children with diplegic cerebral palsy by using dual-route model: A behavioral and brain electrophysiological study
指導教授:孟令夫孟令夫引用關係
學位類別:碩士
校院名稱:長庚大學
系所名稱:臨床行為科學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:218
中文關鍵詞:雙癱型腦性麻痺視知覺視覺雙路徑腦電生理
外文關鍵詞:diplegic cerebral palsyvisual perceptiondual-route modelbrain electrophysiology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
視知覺為大腦接收視覺訊息後對資訊進行操弄整合的能力。視覺雙路徑模式依照視覺訊息內容及大腦運作機制,將視覺訊息分為「物體視覺」及「空間視覺」,當兩種視覺訊息都能正確解讀,個體才能對外界做出適當的動作行為反應。在處理視覺訊息的相關腦區受傷時,將導致視知覺缺損發生,無法對視覺資訊做正確解釋及運用。過去研究及臨床上均可發現,腦性麻痺兒童有相當高的比例患有視知覺缺損。
本研究欲以應用於事件相關電位的「物體視覺」及「空間視覺」電腦化測驗表現,與視知覺能力測驗(non-motor)的表現整合,以ex post facto研究法及類實驗研究法(quasi-experimental design),配對收取8位雙癱型腦性麻痺兒童、及16位健常兒童的資料後,以獨立t檢定、雙因子變異數分析、共變數分析等統計方法,了解雙癱型腦性麻痺兒童的視知覺特質。
本研究腦傷組受試者於視知覺能力測驗(non-motor)中的整體商數、各分測驗標準分數(除視覺順序記憶分測驗外),均顯著小於健常組受試者;同時,腦傷組受試者於執行電腦化視知覺任務時,反應時間及錯誤率均較健常組高,其中,兩組受試者又以物體視覺任務所需反應時間較長、錯誤率較高。以腦電生理結果探討,則腦傷組受試者早期正波P100最大波值較小,腦傷組雙側枕葉的α頻帶及γ頻帶聯繫強度亦均較弱。刺激進入認知運作時,兩組受試者相較,以腦傷組頂葉區P300最大波值較小、雙側背流的α頻帶及γ頻帶腦區間聯繫強度均較弱,顳葉區P300最大波值及P300潛伏期則兩組均未有顯著差異。若以受試者執行不同屬性視知覺任務的表現討論,腦傷組則不似健常組在處理空間視覺任務時,右側頂葉區P4有較高的P300最大波值,但均在P3及Pz有同樣P300最大波值較大的趨勢,而腦區間聯繫強度則未有一定的任務屬性差異。
腦傷組受試者無論在視知覺能力測驗(non-motor)、及電腦化視知覺任務的能力表現均顯著較健常組差,顯示腦傷組受試者具視知覺缺損。以腦電生理結果討論,神經肌肉及動作相關缺損,將影響兩組受試者部分腦電波結果,歸納後可發現,腦傷組與健常組的主要差異在枕葉及頂葉,枕葉的早期正波及兩腦間聯繫強度較健常組弱,頂葉區電極晚期正波、及雙側背流的聯繫強度亦較健常組弱,且右側頂葉電極於空間視覺任務中的活化,並不如健常組有高於物體視覺任務的P300最大波值,上述研究結果可能支持雙癱型腦性痲痺兒童的視知覺運作缺損,主要存於頂葉及枕葉。
Visual perception is the ability of manipulating and integrating the visual information received by brain. The visual information is divided into “object vision” and “spatial vision”, which is mediated by separate neural systems so called dual-route model. Individuals can perform adequate movement only if these two classes of function acting well. Cerebral damage involves visual pathway structures will give rise to visual perceptual impairment. Individuals with visual perceptual impairment would be unable to manipulate visual information adequately. It has been suspected that children with cerebral palsy are at risk of visual perceptual impairment.
We used event-related potential and coherence to explore neural activity while executing computerized “object vision” and “spatial vision” tasks in children with diplegic cerebral palsy. In the same time, we used Test of Visual-Perceptual Skill (non-motor) to evaluate the visual perceptual ability of the participants. Eight children with diplegic cerebral palsy participated and 16 healthy children were treated as matched controls. Independent t test, two-way mixed ANOVA, and two-way ANCOVA were used to compare behavioral and electro- physiological data between two groups of participants and two types of computerized tasks.
The cerebral palsied group had significantly lower visual perceptual quotient and standard scores in every subtest except Visual Sequential Memory subtest than the control group. In the result of computerized tasks, the cerebral palsied group had significantly longer response time and higher error rate than the control group in both object and spatial vision tasks. In the result of brain electrophysiology, the cerebral palsied group not only had smaller peak amplitudes of P100 in occipital region and weaker Coh(O1-O2) in both α and γ band, but also had smaller peak amplitudes of P300 in parietal region and weaker Coh(O1-P3) and Coh(O2-P4) in both α and γ band than the control group. Furthermore, all participants showed greater P300 peak amplitudes at P3 and Pz while executing spatial vision task, but greater peak amplitude of P300 at P4 in spatial vision task only found in the control group. All the participants didn’t show significant differences of coherence between object and spatial vision tasks.
Whether in Test of Visual-Perceptual Skill (non-motor) and computerized tasks, the cerebral palsied group had significantly worse behavioral performance. It implies that children with diplegic cerebral palsy are at risk of visual perceptual impairment. From the ANCOVA result, neuromuscular and motor impairments affect the performance of computerized tasks. The main differences between two groups of participants reside in occipital and parietal region, either of peak amplitude and coherence in these two regions was weaker in the cerebral palsied group. In addition, the difference of P300 peak amplitude at P4 between object and spatial tasks was only found in the control group. The findings mentioned above may imply that the malfunctions of parietal and occipital region in children with diplegic cerebral palsy do exist.
第一章、緒論..........................................................1
第一節、研究緣起與研究動機.............................................1
第二節、研究目的.....................................................2
第三節、重要名詞解釋..................................................3
壹、雙癱型腦性麻痺(diplegic cerebral palsy)..........................3
貳、視知覺(visual perception) ......................................3
參、視覺雙路徑(dual-route model) ...................................4

第二章、文獻回顧......................................................5
第一節、視知覺簡介....................................................5
壹、定義...........................................................5
貳、視知覺要素......................................................6
參、視知覺評估工具...................................................8
第二節、視知覺在大腦運作的機制........................................10
壹、視覺雙路徑.....................................................10
貳、視知覺路徑整合模式..............................................12
第三節、執行視知覺任務大腦運作狀況.....................................14
壹、執行視知覺任務之大腦活化區域判斷..................................14
貳、執行視知覺任務時的行為表現.......................................15
參、執行視知覺任務時誘發的大腦電波....................................16
肆、執行視知覺任務時特定頻率的腦區間聯繫強度...........................21
第四節、雙癱型腦性麻痺兒童之腦傷型態與損傷區域..........................24
壹、正常腦部發展...................................................24
貳、雙癱型腦性麻痺兒童之腦傷型態.....................................25
參、雙癱型腦性麻痺兒童腦傷之損傷區域..................................27
肆、雙癱型腦性麻痺兒童腦電波表現.....................................31
第五節、雙癱型腦性麻痺兒童視知覺功能缺損...............................33
壹、視知覺缺損.....................................................33
貳、雙癱型腦性麻痺兒童視知覺表現特質..................................35
第六節、製作電腦化視知覺刺激的歷程.....................................37
壹、視知覺刺激素材的考慮與發現.......................................37
貳、刺激設計歷程...................................................44
參、建立專家效度...................................................46
第七節、結語........................................................47
第八節、研究提問與研究假設............................................48
壹、研究提問.......................................................48
貳、研究假設.......................................................50

第三章、研究方法.....................................................52
第一節、研究設計....................................................52
壹、研究法.........................................................52
貳、實驗設計.......................................................52
參、研究架構.......................................................53
第二節、研究對象....................................................54
壹、腦傷組(雙癱型腦性麻痺組).........................................54
貳、健常組.........................................................55
第三節、研究工具....................................................55
壹、控制變項之評估工具..............................................55
貳、依變項之評估工具................................................65
第四節、研究過程....................................................67
壹、研究程序.......................................................67
貳、事件相關電位之刺激內容及步驟.....................................68
第五節、資料分析....................................................71
壹、控制變項.......................................................71
貳、視知覺行為評估..................................................71
參、事件相關電位表現................................................72
肆、行為評估與事件相關電位結果之相關性................................74

第四章、研究結果.....................................................75
第一節、人口學資料..................................................75
第二節、控制變項....................................................77
壹、上肢肌肉張力...................................................77
貳、上肢感覺.......................................................78
一、本體覺.......................................................78
二、觸壓覺.......................................................78
參、視覺動作功能...................................................79
一、精細動作.....................................................79
二、視覺動作統整測驗..............................................80
三、電腦化視覺動作測驗............................................80
肆、注意力/過動表現................................................81
伍、側化趨勢.......................................................82
陸、組間控制總結...................................................84
第三節、視知覺能力測驗分數比較........................................85
第四節、電腦化視知覺任務測驗表現比較...................................87
壹、行為資料.......................................................87
貳、特定腦電波成分..................................................90
一、早期正波P100.................................................92
二、早期負波N100.................................................97
三、晚期正波P300................................................104
四、總結.......................................................112
參、腦區間聯繫強度.................................................118
一、低頻腦電波α頻帶..............................................119
二、高頻腦電波γ頻帶..............................................122
三、總結.......................................................128

第五章、討論........................................................130
第一節、組間控制...................................................130
第二節、雙癱型腦性麻痺兒童之視知覺能力................................131
壹、視知覺能力測驗.................................................131
貳、電腦化視知覺測驗行為表現........................................133
一、反應時間....................................................135
二、錯誤率......................................................136
參、視知覺能力測驗與電腦化視知覺測驗之相關性..........................137
第三節、雙癱型腦性麻痺兒童之腦電波特質................................139
壹、特定腦電波成分.................................................141
一、早期正波P100................................................143
二、早期負波N100................................................147
三、晚期正波P300................................................150
貳、腦區間聯繫強度.................................................156
一、低頻腦電波α頻帶..............................................156
二、高頻腦電波γ頻帶..............................................158
第四節、執行不同視知覺任務之表現特質..................................161
壹、電腦化視知覺測驗行為表現........................................161
一、反應時間....................................................161
二、錯誤率......................................................161
貳、特定腦電波成分.................................................162
一、早期正波P100................................................162
二、早期正波N100................................................164
三、晚期正波P300................................................167
參、腦區間聯繫強度.................................................171
一、低頻腦電波α頻帶..............................................171
二、高頻腦電波γ頻帶..............................................173
第六章、結論與建議...................................................176
第一節、結論.......................................................176
第二節、研究限制與未來建議...........................................178
第三節、臨床應用...................................................181

參考文獻
中文參考文獻......................................................182
西文參考文獻......................................................182

附錄
附錄一 控制組與腦傷組上肢肌肉張力總表.................................197
附錄二 控制組與腦傷組上肢感覺總表....................................198
附錄三 控制組與腦傷組視覺動作功能總表.................................199
附錄四 控制組與腦傷組側化及注意力/過動表現總表........................200
附錄五 控制組與腦傷組於視覺能力測驗表現總表............................201
附錄六 腦傷組與控制組於執行電腦化視知覺表現之差異整理...................202
受試者執行不同屬性電腦化視知覺表現之差異整理.....................203
附錄七 受試者執行電腦化測驗行為反應之共變數分析摘要表...................204
附錄八 執行視知覺任務P100最大波值之共變數分析摘要表....................205
附錄九 執行視知覺任務P100潛伏期之共變數分析摘要表......................206
附錄十 執行視知覺任務N100最大波值之共變數分析摘要表....................207
附錄十一 執行視知覺任務N100潛伏期之共變數分析摘要表....................209
附錄十二 執行視知覺任務P300最大波值之共變數分析摘要表..................211
附錄十三 執行視知覺任務P300潛伏期之共變數分析摘要表....................213
附錄十四 執行視知覺任務α頻帶聯繫強度共變數分析摘要表....................215
附錄十五 執行視知覺任務γ頻帶聯繫強度共變數分析摘要表....................217
中文參考文獻
杜婉茹(民96)。空間與物件視覺工作記憶之大腦機制:行為與事件相關電位之研究。長
庚大學臨床行為科學研究所碩士論文,未出版,桃園縣。
許天威(民92)。個案實驗研究法。台北:五南。
陸莉、劉鴻香(民86)。拜瑞─布坦尼卡視覺─動作統整發展測驗指導手冊。台北:心
理。
神經解剖學精義(陳鋒益譯)(民81)。台北:合記。(原著出版年:1978年)
臨床神經解剖學基礎(黃華民編譯)(民86)。台北:合記。(原著出版年:不詳)
盧慶春(民92)。腦性麻痺的現代診斷與治療(初版)。台北:合記。

西文參考文獻
Andre, P., Thebaud, B., Delavaucoupet, J., Zupan, V., Blanc, N.,
d'Allest, A. M., et al. (2001). Late-onset cystic
periventricular leukomalacia in premature infants: A threat
until term. American Journal of Perinatology, 18, 79-86.
Aso, K., Scher, M. S., & Barmada, M. A. (1989). Neonatal
electroencephalography and neuropathology. Journal of Clinical
Neurophysiology, 6, 103-23.
Banker, B. Q., & Larroche, J. C. (1962). Periventricular
leukomalacia of infancy: A form of neonatal anoxic encelopathy.
Archieves of Neurology, 7, 386-410.
Barceló, F., Suwazono, S., & Knight, R. T. (2000). Prefrontal
modulation of visual processing in humans. Nature Neuroscience,
3, 399-403.
Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (1999).
Are cognitive processes manifested in event-related gamma,
alpha, theta and delta oscillations in the EEG? Neuroscience
Letters, 259, 165-8.
Baud, O., d'Allest, A. M., Lacaze-Masmonteil, T., Zupan, V.,
Nedelcoux, H., Boithias, C., et al. (1998). The early diagnosis
of periventricular leukomalacia in premature infants with
positive rolandic sharp waves on serial electroencephalography.
The Journal of Pediatrics,132, 813-7.
Bentzel, K. (2002). Assessing abilities and capacities: sensation.
In C. A. Trombly, & M. V. Radomski (Eds.), Occupational Therapy
for Physical Dysfunction (5th ed.) (pp. 159-175). Baltimore:
Williams & Wilkins.
Biagioni, E., Bartalena, L., Boldrini, A., Pieri, R., & Cioni, G.
(2000). Electroencephalography in infants with periventricular
leukomalacia: prognostic features at preterm and term age.
Journal of Child Neurology, 15, 1-6.
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a
modified Ashworth scale of muscle spasticity. Physical Therapy,
67, 206-7.
Bourke-Talor, H. (2003). Melbourne Assessment of Unilateral Upper
Limb Function: Construct validity and correlation with the
pediatric evaluation of disability inventory. Developmental
Medicine and Child Neurology, 45, 92-96.
Burtner, P. A., Wilhite, C., Bordegaray, J., Moedl, D., Roe, R. J.,
& Savage, A. R. (1997). Critical review of visual perceptual
tests frequently administered by pediatric therapists. Physical
& Occupational Therapy in Pediatrics., 17, 39-61.
Calhoun, V. D., Adali, T., McGinty, V. B., Pekar, J. J., Watson, T.
D., & Pearlson, G. D. (2001). fMRI Activation in a visual-
perception task: network of areas detected using the general
linear model and independent components analysis. NeuroImage,
14, 1080–1088.
Chan, P. L. C., & Chow, S. M. K. (2005). Reliability and validity of
the Test of Visual-Perceptual Skills (Non-Motor) - Revised for
Chinese preschoolers. American Journal of Occupational Therapy,
59, 369-76.
Chiappa, K. H. (1997). Pattem shift visual evoked potentials
methodology. In K. H. Chiappa (Ed.), Evoked Potentials in
Clinical Medicine. New York: Raven Press.
Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain
potentials: An introduction. In M. D. Rugg & M. G. H. Coles
(Eds.), Electrophysiology of Mind: Event-Related Brain
Potentials and Cognition. London: Oxford University Press.
Decety, J., & Grèzes, J. (1999). Neural mechanisms subserving the
perception of human actions. Trends in Cognitive Science, 3, 172-
178.
Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., &
Javitt, D. C. (2002). Impaired Visual Object Recognition and
Dorsal/Ventral Stream Interaction in Schizophrenia. Archives of
general psychiatry, 59, 1011-1020.
Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A.,
Snodgrass, J. G., Schroeder, C. E., et al. (2000). Activation
timecourse of ventral visual stream object-recognition areas:
high density electrical mapping of perceptual closure processes.
Journal of Cognitive Neuroscience, 12, 615-621.
Doniger, G. M., Foxe, J. J., Schroeder, C. E., Murray, M. M.,
Higgins, B. A., & Javitt, D. C. (2001). Visual perceptual
learning in human object recognition areas: A repetition priming
study using high-density electrical mapping. NeuroImage, 13, 305–
313.
Ermellina, F., Michelina, I., Gabriella, B., Adriana, A., Graziella,
F., & Mariangela, F. (1993). The cognitive development of
children born preterm and affected by spastic diplegia. Brain
and Development, 15, 428-432.
Fazzi, E., Bova, S. M., Uggetti, C., Signorini, S. G., Bianchi, P.
E., Maraucci, I., et al. (2004). Visual-perceptual impairment in
children with periventricular leukomalacia. Brain and
Development, 26, 506-512.
Fedrizzi, E., Inverno, M., Botteon, G., Anderloni, A., Filippini,
G., & Farinotti, M. (1993). The cognitive development of
children born preterm and affected by spastic diplegia. Brain
and Development, 15, 428-32.
Fedrizzi, E., Inverno, M., Bruzzone, M. G., Botteon, G., Saletti,
V., & Farinotti, M. (1996). MRI features of cerebral lesions and
cognitive functions in preterm spastic diplegic children.
Pediatric Neurology, 15, 207-12.
Fedrizzi, E., Anderloni, A., Bono, R., Bova, S., Farinotti, M.,
Inverno, M., et al. (1998). Eye-movement disorders and visual-
perceptual impairment in diplegic children born preterm: a
clinical evaluation. Developmental Medicine and Child Neurology,
40, 682-8.
Gardner, M. F. (1996). Test of Visual-Perceptual Skills (Non-Motor) -
Revised Manual. Hydesville, CA: Psychological and Educational
Publications.
Gasser, T., Jennen-Steinmetz, C., & Verleger, R. (1987). EEG
coherence at rest and during a visual task in two groups of
children. Electroencephalogr Clin Neurophysiol, 67, 151-8.
Goodale, M. A., & Humphrey, G. K. (1998). The objects of action and
perception. Cognition, 67, 181–207.
Goto, M., Ota, R., Iai, M., Sugita, K., & Tanabe, Y. (1994). MRI
changes and deficits of higher brain functions in preterm
diplegia. Acta Paediatrics, 83, 506-511.
Gunn, A., Cory, E., Atkinson, J., Braddick, O., Wattam-Bell, J.,
Guzzetta, A., et al. (2002). Dorsal and ventral stream
sensitivity in normal development and hemiplegia. Neuroreport,
13, 843-847.
Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human
attention: event-related potentials and oscillations.
Neuroscience and Behavioral Reviews, 25, 465-476.
Hillyard, S. A., & Anllo-vento, L. (1998). Event-related brain
potentials in the study of visual selective attention.
Proceedings of the National Academy of Sciences of the United
States of America, 95, 781-787.
Hoeksma, M. R. (2002). Psychophysiological Perspectives on Autism.
Ponsen & Looijen BV: Wageningen.
Hopf, J.-M., Vogel, E., Woodman, G., Heinze, H.-J., & Luck, S. J.
(2002). Localizing visual discrimination processes in time and
space. Journal of Neurophysiology, 88, 2088-2095.
Ito, J., Saijo, H., Araki, A., Tanaka, H., Tasaki, T., Cho, K., et
al. (1996). Assessment of visuoperceptual disturbance in
children with spastic diplegia using measurements of the lateral
ventricles on cerebral MRI. Developmental Medicine and Child
Neurology, 38, 496-502.
Jacobson, L. K., & Dutton, G. N. (2000). Periventricular
leukomalacia: an important cause of visual and ocular motility
dysfunction in children. Survey of Ophthalmology, 45, 1-13.
James, T. W., Culham, J., Humphrey, G. K., Milner, A. D., & Goodale,
M. A. (2003). Ventral occipital lesions impair object
recognition but not object-directed grasping: an fMRI study.
Brain, 126, 2463-2475.
Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne,
E., & Sejnowski, T. J. (2001). Analysis and visualization of
single-trial event-related potentials. Human Brain Mapping, 14,
166–185.
Kaiser, J., & Lutzenberger, W. (2005). Human gamma-band activity: A
window to cognitive processing. Neuroreport, 16, 207-211.
Kirino, E., Belger, A., Goldman-Rakic, P., & McCarthy, G. (2000).
Prefrontal activation evoked by infrequent target and novel
stimuli in a visual target detection task: an event-related
functional magnetic resonance imaging study. The Journal of
Neuroscience, 20, 6612–6618.
Knyazeva, M. G., Kiper, D. C., Vildavski, V. Y., Despland, P. A.,
Maeder-Ingvar, M., & Innocenti, G. M. (1999). Visual stimulus–
dependent changes in interhemispheric EEG coherence in humans.
Journal of Neurophysiology, 82, 3095-3107.
Koeda, T., & Takeshita, K. (1992). Visuo-perceptual impairment and
cerebral lesions in spastic diplegia with preterm birth. Brain
and Development, 14, 239-44.
Koeda, T., & Takeshita, K. (1998). Electroencephalographic coherence
abnormalities in preterm diplegia. Pediatric Neurology, 18, 51-
56.
Kolb, B., & Whishaw, I. (2003). Fundamentals of Human
Neuropsychology (5th ed.). New York: Worth Publisher.
Krägeloh-Mann, I., Hagberg, B., Petersen, D., Riethmüller, J., Gut,
, E., & Michaelis, R. (1991). Bilateral spastic cerebral palsy –
pathogenetic aspects from MRI. Neuropediatrics, 23, 46-48.
Krägeloh-Mann, I., Petersen, D., Hagberg, G., Vollmer, B., Hagberg,
B., & Michaelis, R. (1995). Bilateral spastic cerebral palsy –
MRI pathology and origin analysis from a representative series of
56 cases. Developmental Medicine and Child Neurology, 37, 379-
397.
Kulak, W., & Sobaniec, W. (2004). Molecular mechanisms of brain
plasticity: neurophysiologic and neuroimaging studies in the
developing patients. Roczniki Akademii Medycznej Bialymstoku,
49, 227-236.
Kulak, W., Sobaniec, W., Bockowski, L., Solowiej, E., Smigielska-
Kuzia, J., Artemowicz, B., et al. (2005). Neurophysiologic
studies of brain plasticity in children with cerebral palsy.
Roczniki Akademii Medycznej Bialymstoku, 50, 74-77.
Large, M. E., Aldcroft, A., & Vilis, T. (2005). Perceptual
continuity and the emergence of perceptual persistence in the
ventral visual pathway. Journal of Neurophysiology,93, 3453–3462.
Luo, Y.-J., Greenwood, P. M., & Parasuraman, R. (2001). Dynamics of
the spatial scale of visual attention revealed by brain event-
related potentials. Cognitive Brain Research, 12, 371–381.
Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J.,
Courchesne, E., et al. (2002). Dynamic brain sources of visual
evoked responses. Science, 295, 690-694.
Makeig, S., Westerfield, M., Townsend, J., Jung, T.-P., Courchesne,
E., & Sejnowski, T. J. (1999). Functionally independent
components of early event-related potentials in a visual spatial
attention task. Philosophical Transactions of the Royal Society:
Biological Sciences, 354, 1135-1144.
Mangun, G. R. (1991). Human visual evoked potentials: induced
rhythms or separable components? In E. Basar, & T. H. Bullock
(Eds.), Induced Rhythms in the Brain. Boston: Birkhäuser.
Mecklinger, A., Maess, B., Opitz, B., Pfeifer, E., Cheyne, D., &
Weinberg, H. (1998). A MEG analysis of the P300 in visual
discrimination tasks. Electrocephalography and Clinical
Neurophysiology, 108, 45-56.
Mecklinger, A., & Pfeifer, E. (1996). Event-related potentials
reveal topographical and temporal distinct neuronal activation
patterns for spatial and object working memory. Cognitive Brain
Research, 4, 211-224.
Melhem, E. R., Hoon, A. H. Jr., Ferrucci, J. T. Jr., Quinn, C. B.,
Reinhardt, E. M., Demetrides, S. W., et al. (2000).
Periventricular leukomalacia: relationship between lateral
ventricular volume on brain MR images and severity of cognitive
and motor impairment. Radiology, 214, 199-204.
Menken, C., Cermak, S. A., & Fisher, A. (1987). Evaluating the
visual-perceptual skills of children with cerebral palsy.
American Journal of Occupational Therapy, 41, 646-651.
Miller, G., & Clark, G. D. (Eds.). (1998). The cerebral palsies:
Cause, consequences, and management. Woburn, MA: Butterworth-
heinemann.
Müller, M. M., & Keil, A. (2004). Neuronal synchronization and
selective color processing in the human brain. Journal of
Cognitive Neuroscience, 16, 503-522.
Neistadt, M. E., & Crepeau, E. B. (1998). Willard and Spackman’s
Occupational Therapy. (9th ed.). Philadelphia: Lippincott-Raven
Publishers.
Oldfield, R. C. (1971). The assessment and analysis of handness: The
Edimburgh Inventory. Neuropsychologia, 9, 97-113.
Okumura, A., Hayakawa, F., Kato, T., Kuno, K., & Watanabe, K.
(1999). Positive rolandic sharp waves in preterm infants with
periventricular leukomalacia: their relation to background
electroencephalographic abnormalities. Neuropediatrics: Journal
of Pediatric Neurobiology, Neurology and Neurosurgery, 30, 278-
82.
Okumura, A., Hayakawa, F., Kato, T., Maruyama, K., Kubota, T.,
Suzuki, M., et al. (2003). Abnormal sharp transients on
electroencephalograms in preterm infants with periventricular
leukomalacia. The Journal of Pediatrics, 143, 26-30.
Okumura, A., Kato, T., Kuno, K., Hayakawa, F., & Watanabe, K.
(1997). MRI findings in patients with spastic cerebral palsy. Ⅱ:
correlation with type of cerebral palsy. Developmental Medicine
and Child Neurology, 39, 369-372.
Passingham, R. E., & Toni, I. (2001). Contrasting the dorsal and
ventral visual systems: guidance of movement versus decision
making. NeuroImage, 14, S125–S131.
Polich, J. (2000). P300 as a clinical assay: rationale, evaluation,
and findings. International Journal of Psychophysiology, 38, 3-
19.
Portney, L. G., & Watkins, M. P. (2000). Power and sample size.
Foundations of clinical research: Applications to practice (2nd
ed.) (pp.705-729). New Jersey: Prentice-Hall.
Posada, A., Hugues, E., Franck, N., Vianin, P., & Kilner, J. (2003).
Augmentation of induced visual gamma activity by increased task
complexity. European Journal of Neuroscience, 18, 2351-2357.
Postle, B. R., & D’Esposito, M. (1999). Dissociation of human
caudate nucleus activity in spatial and nonspatial working
memory: an event-related fMRI study. Cognitive Brain Research,
8, 107-115.
Quitana, L. A. (2002). Assessing abilitied and capacities: vision,
visual perception, and praxis. In C. A. Trombly, & M. V.
Radomski (Eds.), Occupational Therapy for Physical Dysfunction
(5th ed.). Baltimore: Williams & Wilkins.
Rao, H., Zhou, T., Zhuo, Y., Fan, S., & Chen, L. (2003).
Spatiotemporal activation of the two visual pathways in form
discrimination and spatial location: A brain mapping study.
Human Brain Mapping, 18, 79–89.
Robinson, D. L. (1999). The technical, neurological and
psychological significance of 'alpha', 'delta' and 'theta' waves
confounded in EEG evoked potentials: a study of peak latencies.
Clinical Neurophysiology, 110, 1427-34.
Roelants-van Rijn, A. M., Groenendaal, F., Beek, F. J. A., Eken, P.,
van Haastert, I. C., & de Vries, L. S. (2001). Parenchymal brain
injury in the preterm infant: comparison of cranial ultrasound,
MRI and neurodevelopmental outcome. Neuropediatrics, 32, 80-89.
Salati, R., Borgatti, R., Giammari, G., & Jacobson, L. (2002).
Oculomotor dysfunction in cerebral visual impairment following
perinatal hypoxia. Developmental Medicine and Child Neurology,
44, 542-550.
Scherzer, A. L. (2001).History, definition, and classification of
cerebral palsy. In A. L. Scherzer (Ed.), Early diagnosis and
interventional therapy in cerebral palsy: An interdisciplinary
age-focused approach (3rd ed.). New York: Marcel Dekker.
Schneck, C. M. (2001). Visual perception. In J. Case-Smith (Ed.),
Occupational Therapy for Children (4th ed.). Missouri: Mosby.
Schürmann, M., & Basar, E. (1999). Alpha oscillations shed new
light on relation between EEG and single neurons. Neuroscience
Research, 33, 79–80.
Schürmann, M., Basar-Eroglu, C., & Basar, E. (1998). Evoked EEG
alpha oscillations in the cat brain - a correlate of primary
sensory processing? Neuroscience Letters, 240, 41-4.
Senkowski, D., & Herrmann, C. S. (2002). Effects of task difficulty
on evoked gamma activity and ERPs in a visual discrimination
task. Clinical Neurophysiology, 113, 1742–1753.
Shen, L., Hu, X., Yacoub, E., & Ugurbil, K. (1999). Neural
correlates of visual form and visual spatial processing. Human
Brain Mapping, 8, 60–71.
Sigmundsson, H., Hansen, P. C., & Talcott, J. B. (2003).
Do ‘clumsy’ children have visual deficits. Behavioural Brain
Research, 139, 123-/129.
Simon-Thomas, E. R., Brodsky, K., Willing, C., Sinha, R., & Knight,
R. T. (2003). Distributed neural activity during object, spatial
and integrated processing in humans. Cognitive Brain Research,
16, 457-467.
Springer, J. A., Binder, J. R., Hammeke, T. A., Swanson, S. J.,
Frost, J. A., Bellgowan, P. S., et al. (1999) Language
dominance in neurologically normal and epilepsy subjects: a
functional MRI study. Brain, 122, 2033-2046.
Stamenović, J., Đurić, S., Đorđević, G., & Đurić, V. (2005). The
Correlation between Neuropsychological and Neurophysiological
Parameters in Early Stages of Parkinson's Disease. Medicine and
Biology, 12, 104-112.
Stiers, P., de Cock, P., & Vandenbussche, E. (1998). Impaired visual
perceptual performance on object recognition task in children
with cerebral visual impairment. Neuropediatrics, 29, 80-88.
Stiers, P., de Cock, P., & Vandenbussche, E. (1999). Separating
visual perception and non-verbal intelligence in children with
early brain injury. Brain and Development, 21, 397-406.
Stiers, P., van den Hout, B. M., Haers, M., Vanderkelen, R., De
Vries, L. S., van Nieuwenhuizen, O., et al. (2001). The variety
of visual perceptual impairments in pre-school children with
perinatal brain damage. Brain and Development, 23, 333-348.
Stiers, P., Vanderkelen, R., Vanneste, G., Coene, S., de Rammelaere,
M., & Vandenbussche, E. (2002). Visual-perceptual imparment in a
random sample of children with cerebral palsy. Developmental
Medicine and Child Neurology, 44, 370-382.
Stuss, D. T., Picton, T. W., Cerri, A. M., Leech, E. E., & Stethen,
L. L. (1992). Perceptual closure and object identification:
electrophysiological responses to incomplete pictures. Brain and
Cognition, 19, 253-266.
Sugimoto, T., Woo, M., Nishida, N., Araki, A., Hara, T., Yasuhara,
A., et al. (1995). When do brain abnormalities in cerebral palsy
occur? An MRI study. Developmental Medicine and Child Neurology,
37, 285-292.
Taylor, M. J., & Keenan, N. K. (1990). Event-related potentials to
visual and language stimuli in normal and dyslexic children.
Journal of Psychophysiology, 27, 318-327.
Todd, V. R. (1999). Visual information analysis: frame of reference
for cisual perception. In P. Kramer, & J. Hinojosa (Eds.),
Frames of reference for pediatric occupational therapy (2nd
ed.). Baltimore: Williams & Wilkins.
Ungerleider, L. G., & Haxby, J. V. (1994). 'What' and 'where' in the
human brain. Current Opinion in Neurobiology, 4, 157-65.
Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J.
W. (2001). Functional neuroanatomy of biological motion
perception in humans. Proceedings of the National Academy of
Sciences of the United States of America, 98, 11656-11661.
van den Hout, B. M., de Vries, L. S., Meiners, L. C., Stiers, P.,
van der Schouw, Y. T., Jennekens-Schinkel, A., et al. (2004).
Visual perceptual impairment in children at 5 years of age with
perinatal haemorrhagic or ischaemic brain damage in relation to
cerebral magnetic resonance imaging. Brain and Development, 26,
251-61.
van Der Velde, F., & de Kamps, M. (2001). From knowing what to
knowing where: modeling object-based attention with feedback
disinhibition of activation. Journal of Cognitive Neuroscience,
13, 479-91.
Vakalopoulos, C. (2005). Neural correlates of consciousness: A
definition of the dorsal and ventral streams and their relation
to phenomenology. Medical Hypotheses, 65, 922–931.
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an
index of a discrimination process. Psychophysiology, 37, 190–203.
Wang, J., Zhou, T., Qiu, M., Du, A., Cai, K., Wang, Z., et al.
(1999). Relationship between ventral stream for object vision
and dorsal stream for spatial vision: An fMRI & ERP study. Human
Brain Mapping, 8, 170–181.
Wiklund, L.-M., Uvebrant, P., & Flodmark, O. (1990). Morphalogy of
cerebral lesions in children with congenital hemiplegia: A study
with computed tomography. Neuroradiology, 32, 179-186.
Wróbel, A. (2000). Beta activity: a carrier for visual attention.
Acta Neurobiologiae Experimentalis, 60, 247-60.
Yokochi, K., Aiba, K., Horie, M., Inukai, K., Fujimoto, S., Kodama,
M., & Kodama, K. (1991). Magnetic resonance imaging in children
with spastic diplegia: correlation with the severity of their
motor and mental abnormality. Developmental Medicine and Child
Neurology, 33, 18-25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top