(18.206.177.17) 您好!臺灣時間:2021/04/11 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白哲安
研究生(外文):Pai Che-An
論文名稱:CAD/CAM系統應用於根管治療後小臼齒修復之最佳化設計及生物力學分析
論文名稱(外文):Biomechanical Analysis and Optimal design of CAD/CAM application in Restoring Endodontically Treated Premolar
指導教授:林峻立林峻立引用關係
指導教授(外文):Lin Chun-Li
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:147
中文關鍵詞:有限元素分析韋氏分析小臼齒二級窩洞根管治療CAD/CAM
外文關鍵詞:finite element analysisMODpremolar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:0
摘要
電腦輔助工程設計/製造系統已逐漸應用於牙體復形治療上,主要優點為節省治療的時間然而經根管治療後大範圍缺陷的牙齒其臨床的治療方式是施與牙冠復形,但以牙冠復形的方式復形勢必需要修形較多的健康齒質,但如果只給予嵌體的方式做復形其牙體抵抗斷裂的強度恐有疑慮,因此衍生出探討不同的復形體設計方式對不同窩洞形式的影響,因此本研究針對不同窩洞形式及復形體設計進行深入的參數化探討。本研究整合逆向工程及電腦輔助模擬分析等技術,建構三維小臼齒之有限元素模型並進行驗證實驗,並引入可靠度的數值分析及破壞試驗的音洩分析,針對四種接受根管治療的窩洞(MO、MOD、MODP、MODPB)及四種不同復形法(嵌體/冠蓋體、根柱強化復形體、咬頭覆蓋復形體強化設計及牙冠)共進行十五組的參數討論。比較有限元素分析剩餘齒質應力值結果發現在MO窩洞及MOD窩洞下嵌體及嵌體強化設計約為咬頭覆蓋復形體強化設計的6-8倍而咬頭覆蓋復形體強化設計與牙冠設計約在5%以內;MODP窩洞下冠蓋體、冠蓋體強化設計及牙冠設計為咬頭覆蓋復形體強化設計的3.40倍、3.41倍及1.4倍;MODPB窩洞下冠蓋體強化設計及牙冠設計為咬頭覆蓋復形體強化設計的0.97倍及1.48倍,可靠度分析結果在MO窩洞、MOD窩洞及MODP窩洞下嵌體/冠蓋體及嵌體/冠蓋體強化設計破壞機率較咬頭覆蓋復形體強化設計與牙冠設計高; MODPB窩洞下各復形設計破壞機率差異不大,音洩之破壞結果發現在MO窩洞下嵌體、咬頭覆蓋復形體強化設計及牙冠之破壞負載分別為275.9N、584.8N及594.56 N;在MOD窩洞下嵌體、咬頭覆蓋復形體強化設計及牙冠之破壞負載分別為249.81N、584.714 N及484.376 N。根據本研究之結果經過統計後在MO窩洞及MOD窩洞下咬頭覆蓋復形體強化設計及牙冠為較佳的復形方式,而MODP窩洞及MODPB窩洞之各復形方式並無太大差異。
Abstract
In clinical method for restoration of endodontically treated teeth usually uses crown to cover all cusps, the main reason is that crown restoration may reduce the stress concentration and protect the coronal structure of tooth. Several reinforce methods were suggested on restoration to reduce the risk of fracture. More recently, some study shows preserve more remaining structure of tooth may increase the fracture resistance, and inlays could provide enough internal reinforcement of teeth without occlusal coverage. However it still not clear whether the fracture resistance of tooth is fully treated after these restoration. The aim of this study was to investigate whether endodontically treated premolar under different cavity preparation could archived by different restoration. Using reversing engineering method a 3D finite element model of maxillary premolar were generated to analyze inclusive of four cavities(MO, MOD, MODP and MODPB) and four restorative designs (inlay/onlay, endo- inlay/onlay, endo-crown and crown). The probability analysis of numerical method and the fracture test of acoustic emission were recommended to validate the finite element result. Comparing the maximal principle stress on remaining tooth could find that under MO and MOD cavity, the inlay and endo-inlay design were 6-8 time higher than endo-crown, and the difference between endo-crown and crown were within 5%. In MODP cavity, the maximal principle stress of onlay, endo-onlay and crown were higher than endo-crown 3.40times, 3.41times and 1.4times, respectly. In MODPB cavity, the maximal principle stress of endo-crown and crown were higher than onlay design 1.03times and 1.48times, respectly. In probability analysis, the failure probability of MO、MOD and MODP cavity using inlay/onlay, endo-inlay/endo-only were higher than crown design, the failure probability of MODPB cavity using onlay, endo-crown or crown were slightly difference. The fracture test of acoustic emission analysis, the fracture resistance of MO cavity was recorded as follows: 275.9N for inlay, 584.8N for endo-crown and 594.56N for crown, and the fracture resistance of MOD cavity was recode as follows: 249.81N for inlay,584.714N for endo-crown and 484.376N for crown. Regarding numerical result and experimental result in vitro, the endodontically treated premolar with MO and MOD cavity using endo-crown or crown restoration were recommended in this study, and the endodontically treated premolar with MODP and MODPB cavity were little difference in onlay, endo-crown or crown restoration.
目錄
指導教授推薦書…………………………………………………………
口試委員審定書…………………………………………………………
博碩士論文電子檔案授權書…………………………………………..iii
長庚大學博碩士紙本論文著作授權書………………………………..iv
謝誌…………………………………………………………………...…v
中文摘要………………………………..……………………………... vi
英文摘要…………………………..…………………………………..viii
目錄………………………………………………….…………………..x
圖片目錄………………………...………………………………..….. xiv
表格目錄……………………………..………….………………….. xviii
第一章 緒論……………………………………………………………..1
1.1前言…………………………………………………………………..1
1.1.1牙齒結構………………………………………………………1
1.1.2齲齒原因………………………………………………………3
1.1.3根管治療………………………………………………………4
1.1.4缺損復形………………………………………………………6
1.1.5電腦輔助設計/製造系統…………………………………….11
1.1.6復形體設計…………………………………………………..18
1.1.7分析方法……………………………………………………...22
1.2研究動機……………………………………………………………27
1.3文獻回顧……………………………………………………………28
1.3.1根管治療……………………………………………………..28
1.3.2MOD窩洞……………………………………………………29
1.3.3根柱強化設計………………………………………………..31
1.3.4可靠度及音洩分析…………………………………………..33
1.3.5文獻總結……………………………………………………...37
1.4研究目的……………………………………………………………39
第二章 研究方法………………………………………………………40
2.1研究流程圖…………………………………………………………40
2.2研究參數設定………………………………………………………41
2.3逆向工程……………………………………………………………47
2.4有限元素分析法……………………………………………………51
2.4.1收斂性測試…………………………………………………...51
2.4.2靜態分析……………………………………………………...52
2.5模型驗證實驗……………………………………………………….55
2.5.1有限元素………………………………………………………55
2.5.2體外驗證………………………………………………………56
2.6可靠度分析………………………………………………………….59
2.6.1韋伯方程式驗證………………………………………………59
2.6.2材料性質測定…………………………………………………61
2.7音洩及破壞實驗…………………………………………………….68
2.7.1小臼齒試件製備……………………………………………...69
2.7.2實驗架設……………………………………………………...73
第三章 結果……………………………………………………………78
3.1有限元素分析………………………………………………………78
3.1.1模型建構……………………………………………………...78
3.1.2收斂結果……………………………………………………...80
3.1.3驗證實驗結果………………………………………………...82
3.1.4靜態分析結果………………………………………………...84
3.2可靠度之破壞機率預測……………………………………………95
3.2.1韋氏函數驗證結果………………………………………...…95
3.2.2牙釉質之材料性質測定結果………………...………………98
3.2.3程式化韋氏參數…………………………………………….100
3.2.4破壞機率分析結果………………………………………….102
3.3音洩及破壞實驗結果……………………………………………..112
3.3.1破壞負載結果……………………………………………….112
3.3.2音洩初始破壞結果………………………………………….115
3.3.3斷面破壞…………………………………………………….121
第四章 討論…………………………………………………………..124
4.1電腦模擬分析……………………………………………………..125
4.1.1有限元素模型……………………………………………….125
4.1.2電腦模擬分析之結果探討………………………………….127
4.2可靠度破壞機率分析……………………………………………..129
4.3音洩及破壞實驗……………………………….………………….131
4.4研究假設與限制……………………………….………………….134
第五章 結論與未來展望………………………….………………….136
5.1結論…………………………………………….………………….136
5.2未來展望……………………………………….………………….138
第六章 參考文獻……………………………….…………………….139








圖片目錄
圖1-1口腔上下顎之正視圖…………………………………………….2
圖1-2牙齒的基本構造………………………………………………….3
圖1-3根管治療………………………………………………………….5
圖1-4傳統牙冠製作方式………………………………………………10
圖1-5 DCS電腦輔助設計/製造系統………………………………….12
圖1-6德國KaVo電腦輔助設計/製造系統……………………………13
圖1-7 CEREC系統……………………………………………………..14
圖1-8牙冠復形體………………………………………………………19
圖1-9嵌體及冠蓋體……………………………………………………20
圖1-10根柱強化設計…………………………………………………..21
圖1-11有限元素分析流程……………………………………………..23
圖1-12 3D有限元素模型………………………………………………29
圖1-13四種支台及牙冠設計………….……………………………….32
圖2-1研究流程圖………………………………………………………40
圖2-2設計參數示意圖…………………………………………………43
圖2-3MOD窩洞之復形體設計示意圖………………………………..43
圖2-4逆向工程…………………………………………………………47
圖2-5小臼齒齒影像……………………………………………………49
圖2-6負載條件及邊界條件示意圖……………………………………54
圖2-7電腦模擬分析之負載條件及邊界條件示意圖…………………55
圖2-8電腦模擬分析之應變規含跨區域示意圖………………………56
圖2-9模型驗證實驗示意圖…………………………………………...58
圖2-10韋氏曲線……………………………………………………….61
圖2-11切片流程示意圖……………………………………………….65
圖2-12材料性質實驗流程…………………………………………….67
圖2-13窩洞及復形體製備流程……………………………………….71
圖2-14黏著流程……………………………………………………….73
圖2-15試件架設……………………………………………………….75
圖2-16軟體操作設定介面…………………………………………….75
圖2-17音洩訊號圖…………………………………………………….76
圖2-18音洩及破壞實驗示意圖……………………………………….76
圖2-19音洩及破壞分析圖…………………………………………….77
圖3-1上顎第二小臼齒之有限元素模型及材料性質…………………79
圖3-2參數化MOD窩洞及復形體強化設計模型……………………79
圖3-3四種分割線段方式之網格化……………………………………81
圖3-4觀測節點示意圖…………………………………………………81
圖3-5模型收斂曲線……………………………………………………82
圖3-6MO窩洞之牙釉質應力分佈圖………………………………….85
圖3-7MO窩洞牙本質應力分佈圖…………………………………….86
圖3-8MO窩洞黏著層應力分佈圖…………………………………….86
圖3-9MOD窩洞牙釉質應力分佈圖…………………………………..88
圖3-10MOD窩洞牙本質應力分佈圖…………………………………88
圖3-11MOD窩洞黏著層應力分佈圖………………………………….89
圖3-12MODP窩洞牙釉質應力分佈圖………………………………..90
圖3-13MODP窩洞牙本質應力分佈圖………………………………..91
圖3-14MODP窩洞黏著層應力分佈圖………………………………..91
圖3-15MODPB窩洞牙釉質應力分佈圖………………………………93
圖3-16MODPB窩洞牙本質應力分佈圖………………………………93
圖3-17MODPB窩洞黏著層應力分佈圖………………………………94
圖3-18二維固定局部義齒之有限元素模型………………………….96
圖3-19二維固定局部義齒之應力分佈圖…………………………….96
圖3-20固定局部義齒之破壞機率…………………………………….97
圖3-21牙釉質測定之韋氏參數……………………………………….99
圖3-22韋氏涵數之程式化介面………………………………………100
圖3-23韋氏涵數之VBA程式碼介面……………………………….101
圖3-24MO窩洞與不同復形方式之各材料破壞機率預測………….103
圖3-25MO窩洞與不同復形方式之破壞機率預測………………….104
圖3-26MOD窩洞與不同復形方式之各材料破壞機率預測………..106
圖3-27MOD窩洞與不同復形方式之破壞機率預測………………..106
圖3-28MODP窩洞與不同復形方式之各材料破壞機率預測………108
圖3-29MODPB窩洞與不同復形方式之破壞機率預測…………….109
圖3-30MODP窩洞與不同復形方式之各材料破壞機率預測………111
圖3-31MODPB窩洞與不同復形方式之破壞機率預測……………..111
圖3-32破壞負載長條圖………………………………………………114
圖3-33音洩初始破壞長條圖…………………………………………118
圖3-34 音洩訊號例圖………………………………………………..120
圖3-35破壞斷面 …………………………………………………….123
圖4-1音洩之初始破壞與破壞機率比較圖…………………………..133









表格目錄
表一 本研究參考之韋伯二參數………………………………………34
表二 研究參數列表……………………………………………………45
表三 電腦模擬分析之材料特性表……………………………………52
表四 實驗分組表………………………………………………………68
表五 收斂測試…………………………………………………………80
表六 體外驗證及有限元素驗證分析結果……………………………83
表七 MO窩洞與復形設計之應力值………………………………….85
表八 MOD窩洞與復形設計之應力值………………………………..87
表九 MODP窩洞與復形設計之應力值………………………………90
表十MODPB窩洞與復形設計之應力值……………………………..92
表十一 牙釉質材料性質測定之應力值………………………………98
表十二 破壞負載……………………………………………………..112
表十三 負載結果變異數分析………………………………………..113
表十四 負載結果多重比較…………………………………………..113
表十五 音洩初始破壞負載…………………………………………..115
表十六 音洩初始破壞負載結果變異數分析………………………..116
表十七 音洩初始破壞負載多重比較………………………………..117
表十八 斷裂型態……………………………………………………..122
參考文獻
【1】Braly BV, Maxwell EH. Potential for tooth fracture in restorative dentistry. J Prothet Dent 1981;45:411-4.
【2】Fuller JL, Denehy GE. Concise Dental Anatomy and Morphology. Second Edition 19851;14-24.
【3】Chadwick B, Dummer P, Dunstan F. Dental restoration: what type of filling? Qual Health Care 1999;5:202-7.
【4】Martin N, Jedynakiewicz NM. Clinical performance of CEREC ceramic inlays: a systematic review. Dent Mater. 1999;15:54-61.
【5】Salameh Z, Sorrentino R, Ounsi HF, Goracci C, Tashkandi E, Tay FR, Ferrari M. Effect of Different All-Ceramic Crown System on Fracture Resistance and Failure Pattern of Endodontically Treated Maxillary Premolars Restored With and Without Glass Fiber Posts. J Endod.2007;33;848-51.
【6】Nadal R. Amalgam restoration: cavity preparation, condensing and finishing. J Am Dent Assoc 1962;65: 66-77.
【7】Blaser PK, Potter RH. Effects of designs of class II preparations on resistance to fracture. Oper Dent 1983;8: 6-10.
【8】Khera SC, Goel VK, Chen RCS, Gurusami SA. Parameters of MOD cavity preparations: A 3-D FEM study, part II. Oper Dent 1991;16: 42-54.
【9】Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater 2007; 23:288-95.
【10】Chang YH, Liu PR, Essig ME. A New Technique for Generating a Computer-Aided Design and Computer-Integrated Machining Crown: Case Report. Chang Gung Med J 1999;22: 633-8.
【11】Mormann WH, Krejci I. Clinical and SEM Evaluation of CEREC Inlays after 5 Years in Situ. Quintessence Int 1992;23:109-15.
【12】Duret F, Blouin, JL, Duret, B. CAD/CAM in dentistry. JAM Dent Assoc 1988;117:715-20.
【13】Bindl A, Mormann WH. Klinische und technische aspekleder Cerec-In-Ceram krone. Quintessen,1996,47:775-92.
【14】Calamia JR. Advances in Computer Aided Design and Computer Aided Manufacture Technology. Curr Opin Cosmet Dent 1994;67-73.
【15】Willer J, Rossbach A, WeberHP. Computer-assisted milling of dental restorations using a new CAD/CAM data acquisition system: J Prosthet Dent 1998;3:346-53.
【16】http://www.planetcerec.com
【17】Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for anterior posterior teeth. J Prosthet Dent 2002;22:241-9.
【18】Uno S, Tanaka T, Kawamoto C, Konishi J, Sano H. Micro tensile bond strength to dentin and cavity adaptation of Cerec 2 inlay restoration. Am J Dent 2000;13:59-63.
【19】Sjogren G, Molin M, van Dijken JW. A 10-year prospective evaluation of CAD/CAM manufactured (CEREC) ceramic inlays cemented with a chemically cured or dual-cured resin composite. Int J Prosthodont 2004;17:241-6.
【20】Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent 1995;7:83-94.
【21】Rathke A, Mörmann WH, Lüthy H. Strength of Cerec crowns on different preparations. In: Mormann WH (ed). CAD/CAM in Esthetic Dentistry. Chicago: Quintessence 1996;483-94.
【22】AL-Hiyasat AS, Saunders WP. Investigation of human enamel wear against four dental ceramics and gold. J Dent 1998;26: 5-9.
【23】Lin CL, Chang CH, Wang CH, Ko CC, Lee HE. Numerical investigation of the factors affecting interfacial stresses in a MOD restored tooth by auto-meshed finite element method. J Oral Rehabil 2001;28: 517-25.
【24】Ko CC, Chu CS, Chung KH. Effect of posts on dentin stress distribution in pulpless teeth. J Prosthet Dent 1992;67: 421-7.
【25】Gu XH, Kern M. Marginal discrepancies and leakage of all ceramic crown: influence of luting agents and aging conditions. Int J Prosthodont 2003;16:109-16.
【26】Blaser, M.R. Lund, M.A. Cochran and R.H. Potter. Effects of designs of class II preparations on resistance to fracture. Oper Dent 1983;8:6-10.
【27】Attia A . Fracture load of composite resin and feldspathic all ceramic CAD/CAM crowns. J Prosthet Dent 2006;95:117-23.
【28】Zienkiewicz OC. The FiniteElement Method,3rd edn, McGraw-Hill Co.,London.1977.
【29】Faucher B, Tyson WR. On the Determination of Weibull Parameters. J Mater Sci Lett 1988;7:1199-203.
【30】Viceconti M, Olsen S, Nolte LP, Burton K. Extracting clinically relevant data from finite element simulations. Clin Biomech 2005;20:451-4.
【31】Sedgley CM, Messer HH. Are endodontically treated teeth more brittle ? J Endod 1992;18:332-5.
【32】Caplan DJ,Weintraub JA. Factors related to loss of root canal filled teeth. J Public Health Dent 1997;57:31-9.
【33】Nagasiri R, Chitmongkolsuk S. Long-term survival of endodontically treated molars without crown coverage: A retrospective cohort study. J Prosthet Dent 2005;93:164-70.
【34】Pierrisnard L, Bohin F, Renault P, Barquins M. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis. J Prosthet Dent 2002;4:442-8.
【35】Hannig C, Westphal C, Becker K, Attin T. Fracture resistance of endodontically treated maxillary premolars restored with CAD/CAM ceramic inlays. J Prosthet Dent 2005;4:342-9.
【36】Fennis WM, Kuijs RH, Kreulen CM. A survey of cusp fractures in a population of general dental practices. J Prosthet Dent 2002;6:559-63.
【37】Cavel WT, Kelsey WP, Blankenau RJ. An in vitro study of cuspal fracture. J Prosthet Dent 1985;53:38-42.
【38】Khera SC, Goel VK, Chen RC, Gurusami SA. A three-dimensional finite element model. Oper Dent 1988;13:128-37,
【39】Eakle WS, EH Maxwell, and BV Braly. Fractures of posterior teeth in adults. Am Dent Assoc 1986;112:215-8.
【40】Kuijs RH, Fennis WMM, Kreulen CM, Roeters FJM, Burgersdijk RCW. Fracture strength of cusp replacing resin composite restorations. Am J Dent 2003;34:221-9.
【41】Fennis WMM, Kuijs RH, Kreulen CM, Verdonschot N, Creugers NHJ. Fatigue resistance of teeth restored with cuspal coverage composite restorations. Int J Prosthodont 2004;17:313-7.
【42】Soares CJ, Martins LR, Fonseca RB. Influence of cavity preparation design on fracture resistance of posterior leucite reinforced ceramic restoration. J Prosthet Dent 2006;95:421-9.
【43】Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent mart 2007;23:288-95.
【44】St-Georges AJ, Sturdevant JR, Swift Jr, Thompson JY. Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent 2003;89:551-7.
【45】Yamada Y, Tsubota Y, Fukushima S. Effect of Restoration Method on Fracture Resistance of Endodontically Treated Maxillary Premolars. J Prosthet Dent 2004;17:94-8.
【46】Gorucu J, Tiritoglu M, Ozgunaltay G. Effects of preparation designs and adhesive systems on retention of class II amalgam restorations. J Prosthet Dent 1997;78:250-4.
【47】Mormann WH, Bindl A. Luthy H, Rathke A. Effects of preparation and luting system on all ceramic computer generated crowns. Int J Prosthodont 1998;11:333-9.
【48】Bindl A, Richter B, Mörmann WH. Survival of ceramic computer aided design manufacturing crowns bonded to preparations with reduced macro-retention geometry. Int J Prosthodont 2006;95:81.
【49】Otto T. Computer aided direct all ceramic crowns preliminarily 1 year results of a prospective clinical study. Int J Periofontics Restorative Dent 2004;24:446-55.
【50】Weibull W. A statistic distribution function of wide applicability. J Appl Mecha 1951;18:293-397.
【51】Staninec M, Marshall GW, Hilton JF, Pashley DH, Gansky SA, Marshall SJ, Kinney JH . Ultimate tensile strength of dentin: Evidence for a damage mechanics approach to dentin failure. J Biomed Mater Res 2002;63:342-5.
【52】Lohbauer U, Petschelt A, P. Greil. Lifetime prediction of CAD/CAM dental ceramics. Biomed Mat Res 2002;63:780-5.
【53】Mitchell CA, Abbariki M, Orr JF. The influence of luting cement on the probabilities of survival and modes of failure of cast full coverage crowns. Dent Mater 2000;16:198-206.
【54】Trustrum K, Jayatilaka, ADS. Applicability of Weibull analysis for brittle material. J.Mater.Sci 1983;18: 2765-70.
【55】Ritter JE. Predicting lifetime of materials and material structures. Dent Mater 1995;11: 142-6.
【56】Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995.74: 1253-8.
【57】Chen HY, Hickel R, Setcos JC, Kunzelmann KH. Effects of surface finish and fatigue testing on the fracture strength of CAD-CAM and pressed-ceramic crowns. J Prosthet Dent 1999.82: 468-75.
【58】Park SJ, Seo MK, Rhee KY. Studies on Mechanical Properties of Oxy-Fluorinated. Carbon Fibers Reinforced Composites. Mater Sci Eng 2003;356:219-26.
【59】Allander P, Lassila LVJ, Tezvergil A, Vallittu PK. Acoustic emission analysis of fiber reinforced composite in flexural testing. Dent Mater 2004;20:305-12.
【60】Ozcan M, Breuklander MH, Vallittu PK. The effect of box preparation on the strength of glass fiber reinforced composite inlay retained fixed partial dentures. J Prosthet Dent 2005;93:337-45.
【61】Fennis WM, Tezvergil A, Kuijs RH, Lassila LV, Kreulen CM, Creugers NH, Vallittu PK. In vitro fracture resistance of fiber reinforced cusp replacing composite restorations. Dent Mater 2005;21:565-72.
【62】Rekow ED, Harsono M, Janal M. Factorial analysis of variables influencing stress in all ceramic crowns. Dent Mater 2006;22:125-32.
【63】Andrade OS, Goes MF, Montes MA. Marginal adaptation and micro-tensile bond strength of composite indirect restorations bonded to dentin treated with adhesive and low-viscosity composite. Dent Mater 2007;23:279-87.
【64】Verdonschot N, Fennis WM, Kuijs RH. Generation of 3-D Finite Element Models of Restored Human Teeth Using Micro-CT Techniques. Int J Prosthodont 2001;14:310-5.
【65】Eshleman JR, Janus CE, Jones CR. Tooth preparation designs for resin bonded fixed partial denture to enamel thickness. J Prosthet Dent 1988;60:18-22.
【66】Raiden G, Koss S, Costa L, Hernandez JL. Radiographic Measurement of residual root thickness in premolars with post preparation. J Endod 2001;27:296-8.
【67】Robin C, Scherrer SS, Wiskott HW, Rijk WG, Belser UC. Weibull parameters of composite resin bond strengths to porcelain and noble alloy using the Rocatec system. Dent Mater 2000;18:389-95.
【68】Toparli M. Sress analysis in a post restored tooth utilizing the finite element method. J Dent Res 2003;30:470-6.
【69】Asmussen E, Peutzfeldt A, Sahafi A. Finite element analysis of stress in endodontically treated dowel restored teeth. J Dent Res 2005; 94:321-9.
【70】Yang HS,Lang LA,Guckes AD,Felton DA. The effect of thermal change on various dowel and core restorative materials. J Prosthet Dent 2001;86:74-80.
【71】Sato Y, Yuasa Y, Abe Y, Akagawa Y. Finite Element and Weibull Analysis to estimate Failure Risk in Resin Bonded Retainers. Int J Prosthodont 1995;8:73-8.
【72】Giannini M, Soares CJ, Carvalho RM. Ultimate tensile strength of tooth structures. Dent Mater 2004;20:322-9.
【73】Opdam NJM, Roeters JJ, Kuijs R, Burgersdijk RC. Necessity of bevels for box only Class II composite restorations. J Prosthet Dent 1998;80: 274-9.
【74】Lin CL, Chang YH, Cheng MH. Evaluation of a reinforced slot design for CEREC system to restore extensively compromised premolars. J Dent 2006;34:211-9.
【75】Michael F, David T, Mike S, Martin T. Analysis of tensile bond strengths using Weibull statistics. Biomaterials 2004;25:5031-5.
【76】Ausiello P, Apicella A, Davidson CL, Rengo S. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J Biomech 2001;34:1269-77.
【77】Lin CL, Chang YH, Chang WJ, Cheng MH. Evaluation of a reinforced slot design for CEREC system to restore extensively compromised premolars. J Dent 2006;34: 221-9.
【78】Sakaguchi RL, Brust EW, Cross M, DeLong R, Douglas WH. Independent movement of cusps during occlusal loading. Dent Mater 7: 1991;7:186-90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王明珂,〈集體歷史記憶與族群認同〉,《當代》,91:6-19,1993。
2. 石瑞仁,〈從DIY到MTO-洪東祿「涅盤」個展的突變與穿越〉,《藝術家》,330:482-485,2002。
3. 李維菁,〈楊茂林:階段性的生命態度與創作模式〉,《藝術家》,333:204-208,2003。
4. 李書齊,〈日本玩具商進軍華人市場〉,《數位時代》,104:80-82,2005。
5. 胡永芬,〈天真淫邪求進步-楊茂林創造的電子樂園遊戲〉,《藝術家》,310:424-427,2001。
6. 洪德麟,〈漫畫、動畫的世紀〉,《藝術觀點》,10:36-41,2001。
7. 游崴,〈在街頭、博物館與鹹濕樂園之間:論楊茂林「MADE IN TAIWAN」系列〉,《大趨勢》,2:44-49,2001。
8. 黃淑媚譯,南雄介,〈超扁平的深度-日本當代熱門藝術家村上隆〉,《藝術家》,347:398-405,2004。
9. 黃海鳴,〈從「跨文化認同」到「穿越文化認同」-試談洪東祿創作中的認同觀念演變〉,《藝術家》,324:396-399,2002。
10. 葉乃靜,〈漫畫對大學生的意義研究〉,《資訊傳播與圖書館學》,6卷1期:33-47,1999。
11. 楊瑞彬,〈作為符號的藝術品〉,《現代美術》,34:84-89,1991。
12. 楊茂林,〈封神之前戲—請眾仙〉,《藝術觀點》,21: 89-92,2004。
13. 張國立,〈玩具是一種信仰、一種力量和一種生命〉,《聯合文學》,261:97-99,2006。
14. 張可欣、陸蓉之,〈當代新異術:參展人與策展人的一次對談-張可欣與陸蓉之對話錄〉,《藝術家》,369:362-365,2006。
15. 鄭乃銘,〈是誰在暢飲情慾-閱讀「吳天章個展」與「洪東祿個展」〉,《藝術家》,270:315-317,1997。
 
系統版面圖檔 系統版面圖檔