跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃至偉
研究生(外文):Chin-Wei Huang
論文名稱:鉿鉬二元合金金屬閘極氮化製程開發
論文名稱(外文):The Process Development of Nitrogen Incorporation in Hf-Mo Binary Alloys Metal Gate Electrode
指導教授:賴朝松
指導教授(外文):Chao-Sung Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:70
中文關鍵詞:金屬閘極鉿鉬合金功函數
外文關鍵詞:metal gateHafnium Molybdenum alloyswork function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統電晶體,當通道長度與閘極厚度不斷的持續微縮,將面臨到多晶矽的空乏層效應、高閘極電阻值、硼的穿隧效應………等問題。近年來,許多學者研究利用耐火金屬和金屬氮化物來取代傳統的多晶矽,金屬閘極有下列幾項需求(1)適合的功函數(2)低電阻值(3)高熱穩定性(4)製程整合與高介電材料的相容性。然而金屬化合物的功函數與材料本身晶格結構、結晶相、應力及最近很熱門的Fermi level pinning effect息息相關,所以公函數的調整將是一個很重要的課題。
此論文,將使用DC co-sputter系統,首次利用雙靶材同時濺鍍形成二元合金並加入氮(Nitrogen)進行沉積,使用不同功率(power)及氮(Nitrogen)來調整鉿(Hafnium)、鉬(Molybdenum)合金金屬的功函數。除了氮化鉿鉬(HfxMoyNz)二元合金金屬熱穩定性的研究外,我們在也確實看到不同比例(0%~14%)的氮(Nitrogen)可調變鉿鉬二元合金金屬的功函數(4.16eV~5.17eV),而這功函數調變範圍涵蓋了整個矽能帶(Silicon bandgap),使氮化鉿鉬(HfxMoyNz)二元合金金屬閘極能夠應用於NMOS與PMOS兩種元件上。
另外我們進而對氮化鉿鉬(HfxMoyNz) Fermi level pinning effect進行探討。首先我們發現氮化鉿鉬(HfxMoyNz)在二氧化鉿(Hafnium dioxide)有傑出的熱穩定性在加上功函數調變上可從3.7~4.52eV可應用於NMOS元件上。其次在HfxMoyNz/HfO2結構上所發生的Fermi level pinning機制中主要是由intrinsic Fermi-level pinning effect所主導的。
As scaling of channel length and gate oxide thickness in conventional transistor, the refractory metal and metal nitride gates are used to replace the polysilicon gate due to poly-depletion effects, high gate resistance, and boron penetration. The requirements of metal gate are as following: (1)favorable work function (2)low sheet resistance (3)high thermal stability (4)compatibility with high-k dielectric and integration technology. However, the work function of materials are depends on crystal-orientation, stress and Fermi level pinning effect.
For the first time, we use dc co-sputter system with two targets at the same time to deposit binary alloy metal gate in nitrogen ambient, which we chose different dc power ratio and nitrogen flow to tune the work function of HfxMoyNz. The thermal stability of HfxMoyNz was systematic investigated. With increasing N2 flow ratio from 0% to 14%, the work function of HfxMoyNz was tuned from conduction band (4.16eV) to valence band (5.17eV). It suggests that HfxMoyNz film can be used for both NMOS & PMOS work function adjustment by changing the nitrogen.
We discuss the Fermi-level pinning effect of HfMoN/HfO2 gate stacks. At the first, HfxMoyNz/HfO2 gate stack has excellent thermal stability. In addition, the Φm,eff value for HfxMoyNz/HfO2 gate stack with different N2 ratio ranged from 3.7eV (low N2) to 4.52eV (high N2), and it is suitable for NMOS device but not for PMOS. Second, it has been found that the modification of effective work function (Φm,eff) was dominated by intrinsic Fermi-level pinning effects on the HfxMoyNz/HfO2 gate stack.
Acknowledgment i
Chinese Abstract ii
English Abstract iv
Contents v
Content of Figures vii
List of Tables xi
Chapter 1 Introduction………………………………………………………1
1.1 Background………………………………………………………1
1.2 The motivation in this study……………………………………3
1.3 Thesis Organization……………………………………………4
Chapter 2 The Characterization of Hafnium-Molybdenum Binary Alloys
Nitride Thin Film………………………………………………6
2.1 Introduction……………………………………………………6
2.2 Experiments……………………………………………………8
2.3 Results and Discussion…………………………………………9
2.3.1 N2 flow ratio effects on HfxMoyNz thin films……………9
2.3.2 The influence of RTA treatment…………………………10
2.4 Summary……………………………………………………11
Chapter 3 The Characterization of Hafnium-Molybdenum Binary Alloys
Nitride Metal Gate……………………………………………24
3.1 Introduction…………………………………………………….24
3.2 Experiments……………………………………………………25
3.3 Results and Discussion………………………………………26
3.3.1 Nitrogen effect on work function modification………26
3.3.2 Crystal orientation effect on work function………………27
3.4 Summary………………………………………………………28
Chapter 4 The Fermi-level Pinning Effect of HfMoN Metal Gate………49
4.1 Introduction……………………………………………………49
4.2 Experiments……………………………………………………50
4.3 Results and Discussion………………………………………51
4.3.1 Intrinsic Fermi Level Pinning Effect……………………51
4.3.2 Thermal Stability…………………………………………52
4.4 Summary………………………………………………………53
Chapter 5 Conclusions and Future Works....................................................64
5.1 Conclusions……………………………………………………64
5.1.1 HfMoN thin film………………………………………64
5.1.2 HfMoN gate electrode…………………………………64
5.1.3 The Fermi-level pinning effect of HfMoN metal gate……65
5.2 Future works……………………………………………………66
[1] Semiconductor Industry Association (SIA), The National Technology Roadmap for Semiconductos.
[2] A. Chatterjee, R. Chapman, K. Joyner, M. Yang, Q. He, D. Rogers, S.Fang, et al., in IEDM Tech. Dig., p777, 1998.
[3] C. S. Lai et al., “Work Function Adjustment by Nitrogen Incorporation in HfNx Gate Electrode with Post Metal Annealing”Electrochemical and Solid-State Letter, Vol 9, 2006.
[4] H. F. Luan, B. Z.Wu, L.G. Kang, R. Vrtis, D. Roberts, and D. L.Kwong,“Ultra thin high quality Ta O gate dielectric prepared by in situ rapid thermal processing,” in IEDM Tech. Dig., 1998, pp. 609–612.
[5] H. Y. Yu et al., “Fermi Pinning-Induced Thermal Instability of Metal-Gate Work Function” IEEE Electron Device Letters, vol. 25, p337, May 2004.
[6] C. Ren et al., “Fermi Pinning-Induced Thermal Instability in the Effective Work Function of TaN in TaN/SiO2 gate stack” IEEE Electron Device Letters , vol. 25, p123, March 2004.
[7] Yee-Chia Yeo et al., “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology” J. Appl. Phys., vol. 92, p7266, 2002.
[8] Yee-Chia Yeo et al., “Effects of High-k Gate Dielectric Materials on Metal and Silicon Gate Workfunctions” IEEE Electron Device Letters , vol. 23, p342, June 2002.
[9] Christopher C. Hobbs et al., “Fermi-Level Pinning at the Polysilicon/Metal Oxide Interface-Part I”, IEEE Transactions on Electron Devices, vol. 51, p971, June 2004.
[10] J. Westlinder et al., “On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices”, vol. 24, September 2003. IEEE Electron Device Letters , vol. 24, p550, September 2002.
[11] V. Misra, H.Zhong, H.Lazar, IEEE Electron Dev. Lett., Vol. 23, pp. 354-356 (2002).
[12] C. Cabral, Jr. et al., Symp. VLSI Tech., 184 (2004).
[13] R. Lin, Q.Lu, P.Ranade, T.-J.King, C.Hu, IEEE Electron Dev. Lett., Vol. 23, pp. 49-51 (2002).
[14] J. Pan, et al., “Replacement metal-gate NMOSFETs With ALD TaN/EP-Cu, PVD Ta, and PVD TaN electrode” IEEE Electron Device Letters, Vol. 24, No. 5, May 2003.
[15] J. Pan, et al., “The Effect of Annealing Temperatures on Self-Aligned Replacement (Damascene) TaCN–TaN-Stacked Gate pMOSFETs” IEEE Transactions on Electron Devices, Vol. 51, No. 4, April 2004.
[16] Atushi Yagishita, et al., “Improvement of threshold voltage deviation in damascene metal gate transistors” IEEE Transactions on Electron Devices, Vol. 48, No. 8, August 2001.
[17] H. Y. Yu, et al., “Thermally Robust HfN Metal as a Promising Gate Electrode for Advanced MOS Device Applications” IEEE Transactions on Electron Devices, Vol. 51, No. 4, April 2004.
[18] H. Y. Yu, et al., “Physical and electrical characteristics of HfN gate electrode for advanced MOS devices” IEEE Electron Device Letters, Vol. 24, No. 4, April 2003.
[19] H. Y. Yu, et al., “Thermally Robust HfN Metal Gate Stack for Advanced CMOS Devices” IEDM Tech. Dig., p451, 2003.
[20] C. Ren et al., “A Dual-Metal Gate Integration Process for CMOS With Sub-1-nm EOT HfO2 by Using HfN Replacement Gate”IEEE Electron Device Letters, Vol. 25, No. 8, August 2004.
[21] C. S. Park et al., “Thermally Stable Fully Silicided Hf-Silicide Metal”IEEE Electron Device Letters, Vol. 25, No. 6, June 2004.
[22] C. S. Lai et al., “A Novel Manufacturing Approach for the TaN Stacked Mteal Gate” ALD Conference, 2004.
[23] C. S. Lai et al.,"Improvements of MOS Capacitors with Stack ALD/Sputtering TaN Metal Gates”208th ECS Meeting, 2005.
[24] R. Beyers, “Thermodynamic considerations in refractory metal-siliconoxygen systems,” J. Appl. Phys., vol. 56, no. 1, pp.147–152, Jul. 1984.
[25] M. Kawamura et al., “Characterization of TiN films prepared by a conventional magnetron sputtering system: influence of nitrogen flow percentage and electrical properties” Solid-state electronics, p115, 1996.
[26] “International Technology Roadmap for Semiconductors” 2003 update, published by the Semiconductor Industry Association.
[27] R. Smluchowski, “Anisotoropy of the Electronic Work Function of Metals” Physical Review, Vol. 60, p661, 1941.
[28] H. B. Michaelson, “The work function of the elements and its periodicity” J. Appl. Phys. Vol. 48, p4729, 1977.
[29] P. Ranade et al., “Tunable Work Function Molybdenum Gate Technology for FDSPI-CMOS” IEDM Tech. Dig., 2002.
[30] S.B. Samavedam, L.B. La, P.J. Tobin, B. White, C. Hobbs, L.R.C. Fonseca, A.A. Demkov, J. Schaeffer, E. Luckowski, A. Martinez, M. Raymond, D. Triyoso, D. Roan, V. Dhandapani, R. Garcia, D.C. Anderson, S.G.H.; Moore, K.; Tseng, H.H.; Capasso, C.; Adetutu, O.;Gilmer, W.J. Taylor, R. Hegde, J. Grant, “Fermi level pinning with sub-monolayer MeOx and metal gates [MOSFETs]”, Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International , 8-10 Dec.2003 Pages:13.1.1 - 13.1.4
[31] W. Mönch, “Electronic properties of ideal and interface-modified metal–semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 14, pp.2985–2993, Jul./Aug. 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 25. 溫帶維,〈論朱子宇宙論中惡之可能〉,《哲學與文化》,26卷7期(1999,台北)。
2. 24. 蔡仁厚,〈朱子心性之學綜述〉,《東海學報》第27期(1986,台中)。
3. 23. 蔡仁厚,〈朱子性理系統形成的關鍵與過程〉,《哲學與文化》,28卷7期(2001,台北)。
4. 20. 呂凱,朱熹和性理學,《中華學苑》,第35期(1987,台北)。
5. 18. 林安梧,〈知識與道德之辯證性結構-對朱子學的一些檢討〉,《鵝湖》,10卷6期(1984,台北)。
6. 17. 方蕙玲,〈朱子的認知哲學〉,《中國文化月刊》第95期(1987,台北)。
7. 16. 王孺松,〈朱子論陰陽〉,《國文學報》第8期,(1979,台北)。
8. 15. 劉述先,〈「理一分殊」的規約原則與道德倫理重建之方向〉,《哲學與文化》,28卷7期(2001,台北)。
9. 14. 李志林,〈論朱熹「理一分殊」說的積極意義〉,《哲學與文化》,第20卷10期,總233期(1993,台北)。
10. 13. 黎華標,〈朱子理氣系統之疏解〉,《新亞書院學術年刊》,第13期(1971,香港)
11. 12. 蔡仁厚,〈朱子理氣論的幾個要點〉,《哲學與文化》,2卷2期,總12期(1975,台北)。
12. 11. 袁信愛,〈朱熹理氣論中的人學思想〉,《哲學與文化》,第23卷5期,總264期(1996,台北)。
13. 10. 黎華標,〈朱子之道德的宇宙論〉,《新亞書院學術年刊》,第14期(1972,香港)
14. 9. 朱漢民,〈朱熹本體論的時空關係〉,《中國文化月刊》,第146期(1991,台北)。
15. 8. 鍾彩鈞,〈羅整庵的理氣論〉,《中國文哲研究集刊》,6期(1995.3)。