跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭元欽
研究生(外文):Yuan Chin Cheng
論文名稱:應用多變量分析於半導體元件電性參數之研究
論文名稱(外文):Application of multivariate analysis on electrical parameters of semiconductor devices
指導教授:張睿達
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
外文關鍵詞:principal component analysispartial least squares
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在半導體製造過程中有很多製程變數,困難的是分析這些變數彼此的相關性。為了將元件效能與製程變數結合,我們應用了多變量分析方法,其中包括主成分分析(PCA)及部分最小平方法(PLS),產生新的獨立變數來描述這些製程變數與元件效能間的相關性。這些分析方法已經在模擬產生的實驗數據以及0.11um動態隨機存取記憶體製程的晶圓參數測試數據(WAT)中得到證實。我們可以從模擬驗證了不同長短通道中影響元件的主要元素。另外透過部分最小平方法,我們也建立了預測元件效能的模型。
There are many process variables during the semiconductor manufacturing. It is difficult to analyze the correlation between those variables. To combine device performance with process variables, we applied multivariate analysis methods, including principal component analysis (PCA) and partial least squares (PLS), to generate new independent components for describing the correlation between the process variables and the device performance. These methods have been verified by data generated from simulation and wafer acceptance tests (WAT) of 0.11um dynamic random access memory. We can identify principal factors in long and short channel devices. We also built models to predict the device performance by PLS method.
CHAPTER I Introduction……………………………………………………1
1.1 Background……………………………………………………………1
1.2 Methods ……………………………………………………………2
1.3 Simulation tools………………………………………………2
1.4 Wafer acceptance test…………………………………………4
CHAPTER II Analysis methods………………………………………………5
2.1 Least squares……………………………………………………………5
2.2 Principal component analysis………………………………………9
2.3 Partial least squares…………………………………………………11
2.4 Standardization …………………………………………………………19
CHAPTER III Analysis of device parameters ………………………20
3.1 Simulation generated parameters…………………………………20
3.2 Parameters from wafer acceptance tests………………………40
3.3 Summary of experiments………………………………………………50
CHAPTER IV Conclusion………………………………………………………51
Reference………………………………………………………………52
[1] Taurus TSUPREM-4 User Guide, Synopsys, 2006
[2] Taurus Medici User Guide, Synopsys, 2006
[3] Taurus Workbench User Guide, Synopsys, 2005
[4] D. C. Lay, Linear Algebra and its Applications, Addison Wesley, United States, 2000
[5] L. Hchiang, E. L. Russell, and R. D. Braatz, Fault Detection and Diagnosis in industrial system, Great Britain, 2001.
[6] C. F. Li, H. Ye, and J. Zhag, A Recursive Nonlinear PLS Algorithm for Adaptive Nonlinear Process Modeling, Chem. Eng. Technology, 2005.
[7] P. Geladi, and B. R. Kowalski, Partial least-squares regression: a tutorial, 1985
[8] Bin Yu, H. J. Wann, E. D. Nowak, K. Noda, and C. Hu, Short-Channel Effect Improved by Lateral Channel-Engineering in deep- submicronmeter MOSFET’s, IEEE, 1997
[9] I. C. Li, Nonlinear Predictive Control for pH Processes Using the PLS-Based Dynamic Models, Electronic Theses and Dissertations System, Taiwan, 2003
[10] T. C. Hsiao, Multivariate Partial Least Squares Method for Biomedical Spectroscopic Analysis, Electronic Theses and Dissertations System, Taiwan, 2003
[11] I. T. Jolliffe, Principal component analysis, Springer, New York, 2002
[12] S. J. Qin, Recursive PLS algorithms for adaptive data modeling, Computer Chem. Engng Vol. 22, No. 4/5, pp.503-514, 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top