跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李世傑
研究生(外文):Shih-Chieh Lee
論文名稱:利用碳或與氟離子植入抑制之NMOSFET硼擴散效應
論文名稱(外文):The Suppression of boron Diffusion of MOSFET by Using Carbon or/and Fluorine Implantation
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:59
中文關鍵詞:碳或與氟離子植入輕摻雜位置源汲極位置
外文關鍵詞:Carbon or/and Fluorine ImplantationLDD regionS/D region
相關次數:
  • 被引用被引用:0
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用碳離子或/與氟離子植入在源極與汲極端之DRAM製程週邊電路的NMOSFET上,並依據物性與電性分析來比較其結果,以便利用在CMOS 製程,並探討離子植入在spacer前後對電性的影響。由SIMS實驗結果得知,碳離子植入在矽晶圓上,由於碳離子會佔據矽與硼離子的間隙,因此可以抑制硼離子的擴散;但氟質子植入並不能看到有明顯的改善。又由電性實驗結果得知,在形成spacer之前與之後的碳與氟離子植入在源極與汲極端,可以發現有著不同的結果,利用電性測試的方式來討論碳與氟離子植入矽晶圓的一些電性效應,這包含元件的臨界電壓、飽和電流、off-state電流、次臨界擺幅、基底效應、元件的rool-off效應、overlay capacitance、閘極引發的漏電及接面的漏電,由電性的結果我們得知在spacer之後的碳與氟離子植入,可以得到比較好的元件特性,也可以得知碳與氟離子植入的差異。
In this thesis, carbon or/and fluorine implantation in source/drain region were applied to NMOSFETs in peripherally devices of DRAM circuit. According to physical and electrical analysis, the results can be a reference for future CMOS process. Additionally, the effects of implantation before/after spacer formation on electrical characteristic were investigated. From SIMS experimental result, carbon ions occupied the interstitials of silicon ions and boron ions, thus the diffusion of boron ions could be suppressed. However, no obvious improvement could be observed for fluorine implantation. On the other hand, electrical results showed the differences between the carbon and fluorine implantation in source/drain region before/after the formation of the spacer. These differences were verified and discussed by NFETFETs electrical test including threshold voltage, saturated drain current, off-state current, sub-threshold swing, body effect, threshold voltage roll off, overlay capacitance, gate induce drain current, and junction leakage. According to electrical results of the carbon and fluorine implantation after the formation of the spacer, we not only observed the excellent device characteristic but also found the unlikeness of carbon and fluorine implantation.
Acknowledge ........................................................i
Abstract(Chinese)..................................................ii
Abstract(English).................................................iii
Contents...........................................................iv
Figure captions....................................................vi
Tables captions.....................................................x

Chapter 1 Introduction
1.1 General Background..............................................1
1.2 Motivation in This Study .......................................2
1.3 Organization of the Thesis......................................3

Chapter 2 Process Flow introduction NMOSFET and Experimental flow
2-1 Introduction....................................................6
2-2 DRAM Process Flow in NMOSFET’ Peripherally Circuit..............6
2-2-1 Diffusion Formation Process Flow..............................7
2-2-2 Gate Formation Process Flow...................................7
2-2-3 Dielectric Interconnect and Back End Process Flow............10
2-3 Physical Experiment Flow (SIMS)................................13
2.4 Electrical Experiment Flow.....................................13
2.5 Electrical Measure Methodology of NMOSFET......................14
2.6 Summary........................................................17

Chapter 3 Results and Discussion
3.1 Introduction.................................................. 24
3.2 Effect of Carbon or/and Fluorine Diffusion.................... 25
3.3 Electrical Characteristics Analysis of NMOSFET.................26
3.4 Summary........................................................32

Chapter 4 Conclusions and Future Works
4-1 Conclusions....................................................53
4-2 Future works...................................................54
Reference..........................................................55

Figure captions
Chapter 1
Figure 1-1 (a) Carbon or/and fluorine implantation in pre-spacer region(LDD region).
Figure 1-1 (b) Carbon or/and fluorine implantation in post-spacer region(S/D region).

Chapter 2
Figure 2-1 Well and adjust VT implantations structure.
Figure 2-2 Gate oxidation and gate stack structures.
Figure 2-3 Structure of post-gate stack dry-etch.
Figure 2-4 Source/drain implantations structure of pre-spacer.
Figure 2-5 Source/drain implantations structure of post-spacer.
Figure 2-6 SIMS process flow.
Figure 2-7 Cross section of peripherally circuit in DRAM test structure.
Figure 2-8 Cross section of gate to drain overlay capacitance in test
structure.

Chapter 3
Figure 3-1 Boron SIMS profile in different implantation conditions.
Figure 3-2 (a) Arsenic SIMS profile of light dosage in different
conditions
Figure 3-2 (b) Arsenic SIMS profile of heavy dosage in different conditions
Figure 3-3 (a) Phosphorous SIMS profile in different conditions
Figure 3-3 (b) Phosphorous SIMS profile in different conditions
Figure 3-4 (a) Shows IDS-VG curves of different implanted conditions at saturation region in NMOSFET, and W/L=10um/0.16um
Figure 3-4 (b) Shows threshold voltage of different implanted conditions at saturation region
Figure 3-4 (c) shows saturation current of different implanted conditions at saturation region
Figure 3-4 (d) shows off-state current of different implanted conditions atsaturation region.
Figure 3-5 (a) Shows IDS-VG curves with fluorine implantation in LDD region at different drain voltage.
Figure 3-5 (b) Shows sub-threshold swing with fluorine implantation in LDD region at different drain voltage.
Figure 3-6 (a) Shows IDS-VG curves with carbon implantation in LDD region at different drain voltage.
Figure 3-6 (b) Shows sub-threshold swing with carbon implantation in LDD region at different drain voltage.
Figure 3-7 (a) Shows IDS-VG curves with carbon & fluorine implantation in LDD region at different drain voltage.
Figure 3-7 (b) Shows sub-threshold swing with carbon & fluorine implantation in LDD at different drain voltage.
Figure 3-8 (a) Shows IDS-VG curves with fluorine implantation in S/D region at different drain voltage.
Figure 3-8 (b) Shows sub-threshold swing with fluorine implantation in S/D region at different drain voltage.
Figure 3-9 (a) Shows IDS-VG curves with carbon implantation in S/D region at different drain voltage.
Figure 3-9 (b) Shows sub-threshold swing with carbon implantation in S/D region at different drain voltage.
Figure 3-10 (a) Shows IDS-VG curves with carbon & fluorine implantation in S/D region at different drain voltage.
Figure 3-10 (b) Shows sub-threshold swing with carbon & fluorine implantation in S/D region at different drain voltage.
Figure 3-11 (a) Shows IDS-VG curve with skip implantation at different drain voltage
Figure 3-11 (b) Shows sub-threshold swing with skip implantation at different drain voltage.
Figure 3-12 Shows the trends of sub-threshold swing and different drain voltage in this experiment conditions.
Figure 3-13 Shows IDS-VG curves with fluorine implantation in LDD region at different substrate voltage.
Figure 3-14 Shows IDS-VG curves with carbon implantation in LDD region at different substrate voltage.
Figure 3-15 Shows IDS-VG curves with carbon & fluorine implantation in LDD region at different substrate voltage.
Figure 3-16 Shows IDS-VG curves with fluorine implantation in S/D region at different substrate voltage.
Figure 3-17 Shows IDS-VG curves with carbon implantation in S/D region at different substrate voltage.
Figure 3-18 Shows IDS-VG curves with carbon implantation in S/D region at different substrate voltage. viii
Figure 3-19 Shows IDS-VG curves with skip implantation at different substrate voltage.
Figure 3-20 Shows the trends of threshold voltage shift and different drain voltage in this experiment conditions
Figure 3-21 Shows the trends of overlap capacitance in this experiment conditions
Figure 3-22 Shows ID-VSUB curves of different implanted conditions in this experiment.
Figure 3-23 Shows ID/S-VD curves of different implanted conditions in this experiment.
Figure 3-24 (a) Shows IDS-VG curves of different implanted conditions in linear region.
Figure 3-24 (b) Shows IDS-VG curves of different implanted conditions in saturation region.
Figure 3-25 Shows VT-roll-off curves of different implanted conditions.

Tables captions
Table 2-1 Split table of carbon or/and fluorine implantations in SIMS
experiment
Table 2-2 Dosage and energy of source
Table 2-3 Split table of carbon or/and fluorine implantations in electrical characteristic experiment
[1] Gordon Moore was one of the founders of Intel and first pointed out this “law” around 1970.
[2] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3: The Submicron MOSFET“, Lattice Press, pp. 205.
[3] Ibrahim Ban, C.¨ Ozt¨urk, and Esin Kutlu Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans Electron Devices, Vol. 44, No. 9, 1997.
[4] P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, “Carbon incorporation in silicon for suppressing interstitial-enhanced boron diffusion,” Appl. Phys. Lett. , Vol. 66, pp. 1370, 1995.
[5] J. H. Yi, S. K. Park, Y. J. Park, and H. S. Min, IEEE Trans. Electron Devices, Vol. 52, pp. 554 , 2005.
[6] S. Lombardo, A. Cacciato, K. K. Larsen, V. Raineri, F. L. Via, V. Privitera, and S.U. Campisano, J. Appl. Phys., Vol. 79, pp.3464, 1996.
[7] T. Hamamoto, S. Sugiura, and S. Sawada, IEEE Trans. Electron Devices, Vol.45, pp.1300, 1998.
[8] T. W. Simpson, R. D. Goldberg, and I. V. Mitchell, Appl. Phys. Lett., Vol.67, pp.2857, 1995.
[9] I. Ban, M. C. Ozturk, and E. K. Demirlioglu, IEEE Trans. Electron Devices, Vol.44, pp.1544, 1997.
[10] Homyar C. Mogul, Timothy A. Rost, and Der-Gao Lin, “Advantages of LDD-Only Implanted Fluorine with Submicron CMOS Technologies,” IEEE Trans. Electron Devices, Vol. 44, No. 3, MARCH 1997.
[11] T. Rupp, N. Chaudary, K. Dev, Y. Fukuzaki, J. Gambino, H. Ho, J. Iba, E. Ito, E. Kiewra, B. Kim, M. Maldei, T. Matsunaga, J. Ning, R. Rengarajan, A. Sudo, Y. Takegawa, D. Tobben, M. Weybright, G. Worth, R. Divakaruni, R. Srinivasan, J. Alsmeier, and G. Bronner, “Extending Trench DRAM Technology to 0.15μm Groundrule and Beyond,” IEDM Tech. Digest, pp. 33–36 (1999).
[12] L. Nesbit, J. Alsmeier, B. Chen, J. DeBrosse, P. Fahey, M.Gall, J. Gambino, S. Gernhard, H. Ishiuchit, R. Kleinbenz, J. Mandelman, T. Mii, “A 0.6 μm2 256 Mb trench DRAM cell with self-aligned BuriEd STrap (BEST)” IEEE Trans Electron Devices, 1993 pp. 627-630.
[13] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 2” Lattice Press, Semiconductor Memory Process Integration, pp.587-619.
[14] Yuri Karzhavin, “Shallow Trench Isolation Etch Process for 0.2μm Trench Capacitor DRAM technology", IEEE Trans Electron Devices, 1999. pp. 239-245
[15] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 2” Lattice Press, MOS Device and NMOS Process Integration, pp.298-324.
[16] Vivek Rao, Jennifer Morgan, Wolfgang Hoesler, John Barden,
Yuri Karzhavin, Peter Van Holt, Robert Petter, Heinrich Ollendorf, Kim hristensen, David Ricks, “Tungsten Silicide Gate Stack Optimization for 170-nm DRAM Technology”, IEEE Trans Electron Devices Conference Meeting, 1999. pp. 239-245.
[17] H. Kang, K. Kim, Y. Shin, I. Park, K. Ko, C. Kim, K. Oh, S. Kim, C. Hong, K. Kwon, J. Yoo, Y. Kim, C. Lee, W. Paick, D. Suh, C. Park, S. Lee, S. Ahn, C. Hwang, and M. Lee, “Highly Manufacturable Process Technology for Reliable 256 Mbit and 1 Gbit DRAMs,” IEDM Tech. Digest, pp. 635–638 (1994).
[18] HONG XIAO, “Introduction To Semiconductor Manufacturing Technology” Process Integration, pp.519-538.
[19] C.Y. CHANG, S.M. SZE “ULSI TECHNOLOGY”, Process Integration. pp. 473-498.
[20] J. Y. Chen, “CMOS Devices and Technology for VLSI”, Prentice-Hall, 1990.
[21] Y.P. Tsividis, “Operation and Modeling of the MOS Transistor”, Mc Graw-Hill Book Company. New York 1987, pp. 155.
[22] IBM, Infineon Technologies, Toshiba at DRAM Development Alliance, “Extending Trench DRAM Technology to 0.15um Ground rule and Beyond”, IEEE IEDM 99, pp. 33-35.
[23] B. S. S. Or, Leonard Forbes, Member, IEEE, H. Haddad, and W. Richling, “Annealing Effects of Carbon in n-Channel LDD MOSFET’s, “IEEE Trans Electron Devices, Vol. 12, NO. 11, 1991.
[24] P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate,
“Carbon incorporation in silicon for suppressing interstitial-enhanced boron diffusion,” Appl. Phys. Lett. 66, pp. 1370 (1995).
[25] H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, and J. M. Poate, "Diffusion of Si self-interstitials in the presence of carbon related interstitial traps," Electrochem. Soc. Proc. 96-4, 64 (1996).
[26] J. Wong-Leung, J. S. Williams, and M. Petravi, “The influence of cavities and point defects on boron diffusion in silicon,” Applied Physics Letters May 11, 1998 Vol. 72, Issue 19, pp. 2418-2420.
[27] Kim Christensen and Dennis M. Maher, “Effects of carbon implantation on generation lifetime in silicon,” Applied Physics Letters, Vol. 68, No. 4, 22 January 1996
[28] Ibrahim Ban, C.¨ Ozt¨urk, and Esin Kutlu Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans Electron Devices, Vol. 44, NO. 9, 1997. pp. 1544-1551.
[29] T. W. Simpson, R. D. Goldberg, and I. V. Mitchell, “Suppression of dislocation formation in silicon by carbon implantation,” Appl. Phys.Lett., vol. 67, pp. 2857–2859, 1995.
[30] J. M. Poate, D. J. Eaglesham, G. H. Gilmer, H.-J. Gossmann, M. Jaraiz, C. S. Rafferty, and P. A. Stolk, “Ion implantation and transient-enhanced diffusion,” in IEDM, 1995, pp. 77–80.
[31] Jarvis B. Jacobs and Dimitri Antoniadis, “Channel Profile
Engineering for MOSFET's with 100 nm Channel Lengths,” IEEE Trans Electron Devices, Vol. 42, NO. 5, 1995.
[32] Satoshi Nishikawa, Akira Tanaka, and Tetsuo Yamaji, “Reduction of transient boron diffusion in preamorphized Si by carbon implantation,” Applied Physics Letters, Vol. 60, No. 18, 4 May 1992.
[33] H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, and J.M. Poate, "Diffusion of Si self-interstitials in the presence of carbon related interstitial traps," Electrochem. Soc. Proc. 96-4, 64 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 張美玉(2003)。歷程檔案評量在概念學習上的應用。教師天地,122,4-10。
2. 張美玉(2000)。歷程檔案評量的理念與實施。科學教育月刊 ,231,58-63。
3. 張美玉(1996)。歷程檔案評量在建構教學之應用--一個科學的實徵研究。教學科技與媒體,27,31-46。
4. 歐滄和(1998)。談學習歷程檔案法的點點滴滴。教育資料與研究,20,28-30。
5. 蔡勝隆(2004)。因應教育變革談『問題解決教學』。師說,178,17-19。
6. 劉珀伶(2003)。歷程檔案式評量在教學上的應用。教師天地,122,84-87。
7. 楊明達、王靜如(2000)。兒童雲和雨概念。課程與教學季刊,3(3),137-154。
8. 黃萬居(1997)。建構主義的自然科教學。教育資料與研究,18,35-37。
9. 黃茂在、陳文典(2004)。「問題解決」能力。科學教育月刊,273:21-41。
10. 黃皇明、許民陽(2003)。國小學童對颱風概念及其相關概念認知的研究。台北市立師範學院科學教育研究與發展季刊,2003專刊,18-52。
11. 黃幸美(1997)。兒童的概念學習、解題思考與迷思概念。教育研究雙月刊,55,55-60。
12. 郭重吉(1996)。建構論:科學哲學的省思。教育研究雙月刊,49,16-24。
13. 郭重吉(1992)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20(5),548-570。
14. 郭金美(1999)。建構主義教學方法─影響兒童光學概念學習教學模式的研究。嘉義師院學報,13,157-201。
15. 張民杰(2003)。超學科統整模式之一 - 問題導向學習在國中九年一貫課程的設計與實施。新竹師院學報,17,389-424。