跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永烜
研究生(外文):Yung-Shiuan Chen
論文名稱:三氧化二鐠與氮氧化矽堆疊結構之電流導通機制探討
論文名稱(外文):Electrical conduction mechanism of Al/Pr2O3/Si and Al/Pr2O3/SiON/Si structure
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:傳導機制氮氧化矽三氧化二鐠
外文關鍵詞:Conduction mechanismSilicon oxynitridePr2O3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用鋁/三氧化二鐠/矽之結構以及不同厚度之氮氧化矽作為阻障層使用在鋁/三氧化二鐠/氮氧化矽/矽結構上之電性及傳導機制研究。從模擬結果中得知,以三氧化二鐠做為閘極氧化層之傳導機制在低電場時可以歸因於電子跳躍機制。然而,在氮氧化矽做為三氧化二鐠閘極氧化層之中介層架構之傳導機制依賴氮氧化矽的厚度。氮氧化矽層可以減少高介電常數介電層與矽基板間之界面層形成,造成等效厚度上的上升。
當氮氧化矽厚度低於10Ǻ時將發生直接穿隧的情形且在高電場下氮氧化矽厚度小於26Ǻ時會發生普爾-法蘭克效應。隨著氮氧化矽厚度增加可以避免直接穿隧機制與普爾-法蘭克效應產生,但卻導致氮氧化矽薄膜會有較差的品質與較多帶正電之固定氧化層電荷存在。我們觀察在功率300瓦時間5分鐘下所形成的氮氧化矽有著較低的界面缺陷密度,較低的漏電流密度,少量帶正電之固定氧化層電荷存在,以及良好的表面型態。
In this thesis, the electrical characteristics and conduction mechanisms of Al/Pr2O3/Si structure and Al/Pr2O3/SiON/Si structure with different buffer SiON layer thicknesses have been investigated. From simulation result, the conduction mechanism of Pr2O3/Si structure can be attributed to an electronic hopping conduction process at low field. However, the conduction mechanisms of Pr2O3/SiON/Si structure depend on the thickness of SiON layer. The SiON layer can reduce the formation of interfacial layer between high-k material and Silicon substrate.
When SiON thickness below than 10 Å will occur the direct tunneling current and less than 26 Å will cause the Pool-Frenkel current at high electric field. With SiON thickness increase, the direct tunneling and Pool-Frenkel current can be avoided, but lead to SiON films has poorer quality and more positive fixed charge. We observe that condition of SiON films (300W 5min) has lower Dit value, lower leakage current density, a little positive fixed charge, and good surface morphology.
Acknowledgment………………………………………………………i
Abstract (in Chinese)………………………………………………ii
Abstract (in English)………………………………………………iii
Contents…………………………………………………………………iv
Figure Captions………………………………………………………vii
Table Captions…………………………………………………………xv
Chapter 1 Introduction
1-1 General Background…………………………………………1
1-2 Select of High-k Dielectric………………………………3
1-3 Motivation in This Study……………………………………5
1-4 Organization of This Thesis…………………………………6
Chapter 2 Review of Conduction Mechanisms
2-1 Introduction…………………………………………………8
2-2 Model of Conduction Mechanisms
2-2-1 Electrical Hopping Conduction………………………………9
2-2-2 Space Charge Limited Conduction…………………9
2-2-3 Ionic Conduction…………………………………………9
2-2-4 Schottky Emission……………………………………………………10
2-2-5 Pool-Frenkel Effect.........................................................11
2-2-6 Direct Tunneling..........................................................13
2-2-7 Fowler-Nordheim Tunneling...........................................14
2-2-8 Double Barrier Tunneling...............................................14
2-2-9 Trap-Assisted Tunneling.................................................15

Chapter 3 The Characteristics of Praseodymium Oxide Film and Praseodymium Oxide Films with Different Buffer SiON Layer Thickness
3-1 Introduction……………………………………………………25
3-2 Experimental Procedures……………………………………27
3-3 Simulation Procedures………………………………………28
3-4 Results and Discussions
3-4-1 Capacitance Characteristics………………………………………29
3-4-2 J-V Characteristics…………………………………………………30
3-4-3 Measurement of Barrier Height…………………………………31
3-4-4 Conduction mechanism of Al/Pr2O3/Si and Al/Pr2O3/SiON/Si structures
A. Conduction mechanism of Al/Pr2O3/Si structure......32
B. Conduction mechanisms of Al/Pr2O3/SiON/Si structures prepare under a 100w5min condition.......................33
C. Conduction mechanisms of Al/Pr2O3/SiON/Si structures prepare under a 100w10min condition........................34
D. Conduction mechanisms of Al/Pr2O3/SiON/Si structures prepare under a 200w5min condition.........................35
E. Conduction mechanisms of Al/Pr2O3/SiON/Si structures prepare under a 200w10min condition.........................36
F. Conduction mechanisms of Al/Pr2O3/SiON/Si structures prepare under a 300w5min condition..........................37
G. Conduction mechanisms of Al/Pr2O3/SiON/Si structures prepare under a 300w10min condition.........................37
3-4-5 Constant voltage stress of Al/Pr2O3/Si and Al/Pr2O3/SiON/Si structures.........................................38
3-4-6 Physical characterization
A. XRD of Praseodymium Oxide Films Analysis..........39
B. XPS of Praseodymium Oxide Films and Silicon Oxynitride Films Analysis.......................................39
C. AFM of Praseodymium Oxide Films Analysis........40
3-5 Summaries…………………………………………………40
Chapter 4 Conclusions and Future works
4-1 Conclusions…………………………………………………81
4-2 Future Work…………………………………………………81
Reference……………………………………………………………………82
[1]Process integration, devices, and structures, in International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net, 2006.
[2] Jack C. Lee et al, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal anneling,” Appl. Phys. Lett., vol. 76, no. 3, pp. 1926-1928, 2000.
[3] Renee Nieh et al, “Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics,” Appl. Phys. Lett., vol. 81, no. 26, pp. 1663-1665, 2002.
[4] Hong Bae Park et al, “Effects pf plasma nitridation of Al2O3 interlayer on thermal stability, fixed charge density, and interfacial trap states of HfO2 gate dielectric films grown by atomic layer deposition,” J. Appl. Phys., vol. 94, no.1, pp. 1898-1893, 2003.
[5] E. Atanassova et al, “Conduction mechanisms and reliability of thermal Ta2O5-Si structures and the effect of gate electrode,” J. Appl. Phys., vol. 97, pp.094104, 2005.
[6] S. Chakraborty et al, “Current conduction mechanism in TiO2 Gate Dielectrics,” Microelectronic Engineering, Vol. 81, pp. 188-193, 2005.
[7] F. C. Chin et al, “Leakage Current in Amorphous Ta2O5 Thin Films,” J. Appl. Phys., vol. 81, no. 10, pp. 6911-6915, 1997.
[8] D. L. Kwong et al, “HfTiAlO dielectric as an alternative High-k gate dielectric for the next generation of complementary Metal-Oxide-Semiconductor devices,” Appl. Phys. Lett., vol. 90, pp. 082911, 2007.
[9] X. R. Cheng et al,” Nitridation enhanced conductivity behavior and current transport mechanism in thin thermally nitrided SiO2,” J. Appl. Phys., vol. 63, no. 3, pp. 797-802, 1988.
[10]Y. C. Cheng et al, “A new mwthod for extraction the trap energy in insulators,” J. Appl. Phys., vol. 73, no. 7, pp. 3348-3351, 1993.
[11]G. D. Wilk et al, “High-k gate dielectrics: current states and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10,pp. 5243-5275, 2001.
[12]H. J. Osten et al, “Epitaxial praseodymium oxide: a new high-K dielectric,” Solid-State Electron., vol. 47,pp. 2161-2165, 2003.
[13]H. J. Osten et al, “High-k gate dielectrics with ultra-low leakage current based on praseodymium oxide,” in IEDM Tech. Dig., 2000, pp. 653-656.
[14]G. Adachi , N. Imanaka, “The binary rare earth oxides,” Chem. Rev., vol. 98,pp. 1479, 1998.
[15]H. J. Osten et al, “Band gap and band discontinuities at crystalline Pr2O3/Si(001) heterojunctions,” Appl. Phys. Lett., vol. 80,pp. 297-299, 2002.
[16]J. C. Lee et al, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” in IEDM Tech. Dig., 1999, pp. 133-136.
[17]J. C. Lee et al, “MOSCAP and MOSFET Characteristics Using ZrO2 Gate Dielectric Deposited Directly On Si,” in IEDM Tech. Dig., 1999, pp. 145-148.
[18]L.M. Chen et al, “Influence of pre-deposition treatments on the interfacial and electrical characteristics of ZrO2 gate dielectrics,” Thin Solid Films, 515, 7, pp. 3724-3729, 2007.
[19]J. Lu et al, “Analytical TEM characterization of the interfacial layer between ALD HfO2 film and silicon substrate,” Journal of Crystal Growth., 273, pp.510-514, 2005.
[20]R. J. Cava et al, “Dielectric properties of Ta2O5-SiO2 polycrystalline ceramics,” J. Appl. Phys., vol.80, pp.2346-2348, 1996.
[21]J. Robertson, “Electronic structure and band offsets in high k oxides”, Gate Insulator, IWGI, 2001, pp.76-77.
[22]S. A. Campbell et al, “Titanium dioxide (TiO2)-based gate insulators,” IBM J. Res. Develop., vol.43, pp. 383, 1999.
[23]J. Robertson et al, “Band offsets and Schottky barrier heights of high dielectric constant oxides,” J. Appl. Phys., vol.92, pp. 4712-4721, 2002.
[24]Y.-S. Lai et al, “Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plasma nitridated Si substrates,” J. Appl. Phys., vol. 91, pp. 6428-6434, 2002.
[25]M. Houssa et al, “Electrical properties of thin SiON/Ta2O5 gate dielectric stacks,” J. Appl. Phys,. vol.86, pp. 6462-6467, 1999.
[26]D. L. Kwong et al, “High Quality Ta2O5 Gate Dielectrics with Tox,eq<10 Å,” in IEDM Tech. Dig., 1999, pp.141-144.
[27]J. C. Yu, “Fabrication and characterization of metal-oxidesemiconductor field-effect transistors and gated diodes using Ta2O5 gate oxide,” IEEE Electron Device Lett., vol.21, pp.537-539, 2000.
[28]S. A. Campbellet al, “MOSFET Transistors Fabricated with High Permitivity TiO2 Dielectrics,” IEEE Trans. Electron Devices, vol.44, pp.104-109, 1997.
[29]S. A. Campbell et al, “Titanium dioxide (TiO2)-based gate insulators, IBM J. Res. Develop., vol.43, pp.383, 1999.
[30]X. Guo et al, “High Quality Ultra-thin TiO2/Si3N4 Gate Dielectric for Giga Scale MOS Technology,” in IEDM Tech. Dig., 1998, pp.337-340.
[31]B. He et al, “A 1.1 nm oxide equivalent gate insulator formed using TiO2 on nitrided silicon,” in IEDM Tech. Dig., 1998, pp. 1038-1040.
[32]J. P. Chang et al, “Dielectric property and thermal stability of
HfO2 on silicon,” Appl. Phys. Lett., vol. 81, pp. 2041-2043, 2002.
[33]J. C. Lee et al, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100),” J. Appl. Phys., vol.91, pp. 4353-4363 , 2002.
[34]H. Harris et al, “HfO2 gate dielectric with 0.5 nm equivalent oxide thickness,” Appl. Phys. Lett., vol.81, pp. 1065-1067, 2002.
[35]M. Ichikawa et al, “Compositionally graded hafnium silicate studied by chemically selective scanning tunneling microscopy,” J. Appl. Phys., vol.91, pp. 5661-5665, 2002.
[36]Stesmans et al, “Si dangling-bond-type defects at the interface of (100)Si with ultrathin layers of SiOx, Al2O3 , and ZrO2,” Appl. Phys. Lett., vol. 80, pp. 1957-1959, 2002.
[37]J. R. Chavez et al, “Evidence for hole and electron trapping in
plasma deposited ZrO2 thin films,” J. Appl. Phys., vol. 90, pp. 4284-4286 , 2001.
[38]S. Ramanathan et al, “Ultrathin zirconia/SiO2 dielectric stacks grown by ultraviolet–ozone oxidation,” Appl. Phys. Lett., vol. 80, pp. 3793-3795, 2002.
[39]M. Houssa et al, “Model for interface defect and positive charge generation in ultrathin SiO2/ZrO2 gate dielectric stacks,” Appl. Phys. Lett., vol. 81, pp. 709-711, 2002.
[40]R. Nieh et al, “Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics, Appl. Phys. Lett., vo. 81, pp. 1663-1665, 2002.
[41]T. Yamaguchi et al, “Study on Zr-silicate interfacial layer of ZrO2 metal-insulator-semiconductor structure, Appl. Phys. Lett., vol. 80, pp. 1987-1989, 2002.
[42]M. Kundu et al, “Effect of oxygen pressure on the structure and thermal stability of ultrathin Al2O3 films on Si(001),” J. Appl. Phys., vol. 91, pp. 492-500, 2002.
[43]S. Guha et al, “High-quality aluminum oxide gate dielectrics by ultra-high-vacuum reactive atomic-beam deposition,” J. Appl. Phys., vol. 90, pp. 512-514, 2001.
[44]H. Yang et al., “Integration of ultrathin (1.6~2.0 nm) RPECVD oxynitride gate dielectrics into dual poly-Si gate submicron in IEDM Tech. Dig., 1999, pp.245-247.
[45]S. V. Hattangady et al., “Ultrathin nitrogen-profile engineered gate dielectric films,” in IEDM Tech. Dig., 1996, pp. 495-497.
[46]D. L. Kwong et al., “Improved reliability characteristics of
submicrometer nMOSFET’s with oxynitride gate dielectric pepared by rapid thermal oxidation in N2O,” IEEE Electron Dev. Lett., vol. 12, pp. 495-497, 1991.
[47]D. L. Kwong et al., “MOS characteristics of ultrathin NO grown oxynitrides,” IEEE Electron Dev. Lett., vol. 15, no 10, pp. 421-423, 1994.
[48]C. H. Liu et al., “Mechanism and Prcoess Dependence of Negative Bias Temperature Instability (NBTI) for pMOSFETs with Ultrathin Gate Dielectrics,” in IEDM Tech. Dig., 2001, pp. 861-864.
[49]W. A. Hill and C. C. Coleman, “A single-frequency approximation for interface-state density determination,” Solid State Electron., vol. 23, pp. 987-993, 1980.
[50]J. Dabrowski et al., “Pseudopotential study of PrO2 and HfO2 in fluorite phase,” Microelectron. Reliab., vol.41, pp.1093-1096, 2001.
[51]P. Fiorenza et al, “From micro-to nanotransport properties in Pr2O3-based thin layers,” J. Appl. Phys., vol.98, pp. 044312, 2005.
[52]Haruhiko Ono and Tooru Katsumata, “Interfacial reactions between thin rare-earth-metal oxide films and Si substrates,” Appl. Phys. Lett., vol. 78, pp. 1832-1834, 2002.
[53]Sanghun Jeon and Hyunsang Hwang, “Electrical and physical characteristics of PrTiXOy for metal-oxide-semiconductor gate dielectric applications,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4856-4858, 2002.
[54]G. Lupina et al, “Praseodymium silicate films on Si(100) for gate dielectric application:Physical and electrical characterization,” J. Appl. Phys., vol. 99, pp. 114109, 2006.
[55]Z. M. Wang et al, “Photoemission study of high-k praseodymium silicates formed by annealing of ultrathin Pr2O3 on SiO2/Si,” Thin Solid Films., vol. 462, pp. 118-122, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文