跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠儒
研究生(外文):Guan-Ru Chen
論文名稱:適應性模糊小腦控制器設計
論文名稱(外文):An Adaptive Fuzzy CMAC Controller Design
指導教授:林盈灝林盈灝引用關係陳珍源陳珍源引用關係
指導教授(外文):Ying-Hao LinJen-Yang Chen
學位類別:碩士
校院名稱:中華技術學院
系所名稱:電子工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:模糊小腦控制器小腦模型適應性系統性能及穩定性非線性系統
外文關鍵詞:Fuzzy CMACCMACLyapunov stabilitySystem stabilitynonlinear system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,提出一個適應性模糊小腦控制器,來解決非線性系統的控制問題,以避免傳統小腦模型耗時的學習過程,又能確保系統的穩定及性能。在傳統小腦模型架構中,每一層所分割的區塊為矩形型態,本文所提之適應性模糊小腦控制器是在傳統小腦模型架構下將高斯函數植入所分割的區塊中,做為狀態的歸屬函數,以量測狀態於此區塊之歸屬度。本文所提之模糊小腦控制器,是在受控系統的數學模式未知之下,使所提控制器能近似一理想控制器,以解決受控系統數學模式未知時的的控制問題。因為所設計的模糊小腦控制器與理想控制器間存在一個近似誤差,因而影響系統性能及穩定性。為了提升系統動態性能及穩定性,植入一補償控制器,以確保在有界近似誤差存在的前提下,仍可保有優異的系統動態輸出特性。同時,為了確保控制器參數的收斂性,使控制器之輸出在有界範圍內,我們引用參數投影法達成此一目的。最後,將所提控制器架構應用在混沌系統、倒單擺系統,以驗證其控制性能。
This thesis proposes a fuzzy CMAC(cerebellar model articulation controller) controller, which integrates the fuzzy system and CMAC in the recommendatory controller to tune the gain of weighting parameters such that they can be used to solve the tracking problem of a class of nonlinear systems. First, the use of fuzzy sets as the input clusters, rather than the crisp sets in the original CMAC, can greatly alleviate the memory requirement. Second, fuzzy CMAC can provide a humanlike thinking ability, which is essential to involve expert knowledge. The control law of the compensated controller is used to approximate an ideal control for nonlinear systems. Solves controlled system mathematical model unknown control problem. Because designs between the fuzzy cerebellum controller and the ideal controller has an approximate error, thus influence system performance and stability. In addition, a compensated controller is designed to assure the system stability. The control law of the proposed controller is derived from the Lyapunov stability analysis, so that the system stability and parameters convergence of fuzzy CMAC can be guaranteed with Lyapunov stability analysis. Finally, two nonlinear systems, a chaos system and an inverted pendulum system, are respectively utilized to show the satisfactory performances of the proposed control scheme.
中文摘要 i
英文摘要 ii
目次 iii
表圖目錄 iv
第一章 緒論 1
第一節 研究動機與背景 1
第二節 文獻回顧 3
第三節 論文架構 6
第二章 理論背景 7
第一節 模糊控制器 7
第二節 小腦模型控制器 13
第三節 模糊小腦控制器 18
第三章 適應模糊小腦控制器設計 22
第四章 模擬結果 29
第五章 結論 39
參考文獻 40
作者簡介 47
[1]C.W. Tao and J.S. Taur, “Design of fuzzy-learning fuzzy controllers,” in the Proc. of IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 416-421, 1998.
[2] J.Y. Chen, “A Vss-type FCMAC Controller”, IEEE International Conference On Fuzzy System, 2001.
[3] C.M. Lin and Y.F. Peng, “Adaptive CMAC-based Supervisory Control For Uncertain nonlinear system”, IEEE Trans. On Systems, Man and Cybernetics, Vol. 34, No. 2, pp. 1248-1260, 2004.
[4] J.C Jan and S.L. Hung, “High-order MS-CMAC neural network”, IEEE Trans. On Neural Networks, Vol. 12, No. 3, pp. 598-603, 2001.
[5] C.S. Lin and C.K. Li, “A sum-of-product neural network(SOPNN)”, Neurocomputing, Vol. 30, pp. 273-291, 2000.
[6] K.S. Hwang and C.S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach”, IEEE Trans. On Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 28, No. 5, pp. 680-692, 1998.
[7] L.A. Zadeh, “Fuzzy set”, Informat. Cont., Vol. 8, pp. 338-353, 1965.
[8] J.S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Journal of Dynamic System, and Control, Transaction of ASME, pp. 220-227, September, 1975.
[9]吳財福、余德鴻、楊譓斌、洪金泉、江孟謙,“模糊控制在調光安定器之應用”,第十六屆電力研討會,pp. 315-319, 1995.
[10]J.Y. Chen, P.S. Tsai, and C.C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network”, IEE Proc.-Control Theory and Applications, Vol. 152, No. 2, pp. 133-137, 2005.
[11] J.S. Albus, “Data Storage in the Cerebellar Model Articulation Controller (CMAC)”, Journal of Dynamic Systems, Measurement and Control, Transaction of ASME, pp. 228-233, September, 1975.
[12] W.S. McCulloch, and W.Pitts, “A Logical Calculus of the Ideas Immanent in Nervous activity”, Bulletin of Mathematical Biophysics5: pp. 115-133, 1943.
[13]F. Rosenblatt, Principles of Neurodynamics, New York:Spartan, 1962.
[14] M. Minsky and S. Papert, Perceptrons, MIT Press,Cambridge,MA, 1969.
[15] T. Kohonen, “Self-organized formation of topologically correct feature maps”, Biol. Cybern., No. 43, pp. 59-69, 1982.
[16] G.A. Carpenter, S. Grossberg, and D. B.Rosen, “ART 2-A:An adaptive resonance algorithm for rapid category learning and recognition”, Neural Net., Vol. 4, pp. 493-504, 1991.
[17]J.J. Hopfield, “Unlearning has a stabilizing effect in collective memories”,Nature., Vol. 304, pp. 158-163, 1983.
[18] D.E. Rumelhard, G.E. Hintion, and R.J. Willians, “Learning Representations by Back-Propagating errors”, Nature, 323, pp. 533-536, 1986.
[19]F.H. Glanz, W.T. Miller and L.G. Kraft, “An overview of the CMAC neural network”, IEEE Conf., Neural Networks for Ocean Engineering,, pp. 301-308, 1991.
[20]W.T. Miller, F.H. Glanz and L.G. Kraf, “CMAC :An Associative Neural Network Alternative to Backpropagation”, Proceeding of the IEEE, Vol. 78, No. 10, pp. 1561-1567, 1990.
[21]T.W.Miller, F.H Glanz, and L.G. Kraft, “Applicationof a General Learning Algorithm to the Control of Robotics Manipulators”, The International Journal of Robotics Research, Vol. 2, No. 2, pp. 84-98, 1987.
[22]C.S. Lin, and H. Kim, “CMAC-Based Adaptive Critic Self-Learning Control, IEEE Transactions on Neural Network”, Vol. 2, No. 5, pp. 530-535, 1996.
[23] C.L Karr,. “Applying Genetic to fuzzy logic”, AI Expert , pp. 38-43, March, 1991.
[24]E.C. Neil and J.G. Thierry, “The CMAC and a Theorem of Kolmogorov, Neural Network”, Vol. 5, pp. 221-228, 1991.
[25]P.C.Parks and J.Militizer, “A Comparison of Five Algorithm for the Training of CMAC Memories for Learning Control Systems”, Vol. 28, No. 5, pp. 1027-1035, 1992.
[26]Y.F. Wong, “Learning Convergence in the Model Articulation Controller”, IEEE Transactions on Neural Network,Network, Vol. 3, No. 1, pp. 115-121, 1992.
[27]E.C. Neil and N.M Omar, “A Pulsed Neural Network Capable of Universal Approximation”, IEEE Transactions on Neural Network Vol. 3, No. 2, pp. 308-314, 1992.

[28]S. H. Lane, D. A. Handelman, J. J. Gelfand, “Theory and Development of Higher-Order CMAC Neural Networks”, IEEE Contr. Syst., Vol. 12, pp. 23-30, 1992.
[29]C.S. Lin and H. Kim, “Selection of Learning Parameters for CMAC-Based Adaptive Critic Learning”, IEEE Transactions on Neural Network, Vol. 6, No. 3, pp. 642-647, 1996.
[30]C. T. Chiang and C. S. Lin, “Integration of CMAC and Radial Basis Function Techniques”, IEEE International Conference on Intelligent Systems Vol. 4, pp. 3263-3268, 1995.
[31]C. T. Chiang and C. S. Lin, “CMAC with General Basis Functions”, Neural Network, Vol. 9, No. 7, pp. 1199-1211, 1996.
[32]張志鴻, “應用CMAC 於非線性控制問題”,國立交通大學控制工程研究所碩士論文1994.
[33]陳佑充, “結合CMAC 神經網路與模糊邏輯以控制複雜的非線性系統”,國立交通大學控制工程研究所碩士論文1994.
[34]L.G. Kraft, and J.Pallotta, “Vibration Control Using CMAC Neural Networks with Optimized Weight Smoothing”, Proceedings of 1999 ACC, San Diego, CA.
[35]T.L. Chern, C.W Chuang, “Design of optimal MIMO DIVSC systems and its application to idle speed control of spark ignition engine”, ASME journal of Dynamic Systems Measurement and control, Vol. 119, pp. 175-182, June, 1997.

[36]T.L. Chern, J.K. Chang, L. Tsai, “IVSC-based Adaptive speed Estimator and Resistance Identifier for an Induction Motor”, International Journal of control, Vol. 69, No. 1, pp. 31-47, 1998.
[37]W.T. Miller, R.P Hewes, F.H. Glanz, Real-time dynamic control of an industrial manipulator using a neural network based learning controller, IEEE Transaction Robotics and Automation, Vol. 6, pp. 1-9, Feb, 1990.
[38]C.M. Lin, Y.E Peng, “Adaptive CMAC-Based Supervisory Control for Uncertain Nonlinear Systems”, Part B, IEEE Transactions on Systems, Man and Cybemetics, Vol. 34, No. 2, pp. 1248-1260, April, 2004.
[39]J.H. Nie, and D.A. Linkens, “FCMAC: a Fuzzified Cerebellar Model Articulation controller with Self-organizing Capacity”,. Automatica, Vol. 30, No. 4, pp. 655~664, 2005.
[40]J.Y. Chen, P.S. Tsai, and C.C. Wong, “Adaptive design of a fuzzy cerebella model arithmetic controller neural network,” IEE Proc.-Control Theory and Applications, Vol. 152, No. 2, pp. 133-137, 2005.
[41]M.N. Nguyen, D. Shi, C. Quek, “FCMAC-BYY: Fuzzy CMAC Using BayesiaYing–Yang Learning”, IEEE Transactions On Systems, Man, And Cybernetics, Vol. 36, No. 5, pp. 1180-1190, Oct, 2006.
[42]鄭文豐,“直流無刷馬達之線上模型參考模糊控制器設計”,中原大學電機工程學系碩士論文,2004.
[43]錢鉦津,“模糊控制之立體視覺影像追蹤系統”,中原大學機械工程研究所碩士論文,2004.

[44]E.H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis”, IEEE Trans. Computers, Vol. 26, pp. 35-40, 1997.
[45]Y. Tsukamoto, “An approach to fuzzy reasoning method”, in advances in Fuzzy Set Theory and Applications, M.M. Gupta, R.K. Ragade, and R.R. Yager, Eds. Amsterdam: North-Holland, 1979.
[46]孫宗瀛、楊英魁編著,Fuzzy 控制理論、實作與應用,全華科技圖書,1994.
[47]W.T. Miller, “Real-Timer Neural Network Control of A Biped Walking Robot”, IEEE Control Systems Magazine, Vol. 141, pp. 41-48, 1994.
[48]張簡子介,“用小腦模糊在FPGA上作車牌辨識”,國立臺灣師範大學工業教育研究所碩士論文,2003.
[49]P.R. Chang, “Color image correction for scanner and printer using B-spline CMAC neural networks”, Dept. of Communication Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan, Int J Neural Syst.; Vol. 9, 115-28, April, 1999.
[50]劉欣忠,“灰色模糊小腦控制器設計與實現”,中華技術學院電子工程研究所碩士論文,2005.
[51]J.J.E Slotine and W. Li, “Applied nonlinear control”, Prentice Hall, 1991.
[52]L.X. Wang, “A course in fuzzy systems and control”, Prentice Hall, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top