# 臺灣博碩士論文加值系統

(3.236.23.193) 您好！臺灣時間：2021/07/24 14:11

:::

### 詳目顯示

:

• 被引用:0
• 點閱:205
• 評分:
• 下載:17
• 書目收藏:0
 連續k-out-of-n: F系統定義為n個元件排成線性，若連續k個元件損壞則系統失效；元件如果排成環狀，則稱為環狀連續 系統。本論文主要研究具有n個相同元件之，線性及環狀連續k-out-of-n: F系統可靠度。對於n個相同元件之線性及環狀連續k-out-of-n: F系統可靠度，早期相關研究以正面表列觀念提出遞迴關係式演算法。本論文則以負面表列觀念提出遞迴關係式，並利用矩陣運算加速求解，最後提出更有效率之時間複雜度之演算法。
 Consecutive-k-out-of-n: F system is a linear system of n components, such that the system fails if and only if any k consecutive components all fail; it is called circular consecutive-k-out-of-n: F system while all components form a circle. The thesis mainly studies on the reliability of consecutive-k-out-of-n: F system with i.i.d. components.The past researches apply positive-listing concept to derive recurrence relations algorithms. In the thesis, we use negative-listing concept to derive recurrence relations, and speed up the running time via matrix computation, finally propose more efficient algorithms.
 目錄中文摘要 i英文摘要 ii誌謝 iii目錄 iv第一章 導論 11.1背景 11.2 連續k系統 31.3文獻回顧 51.4研究動機與目的 7第二章 連續k系統可靠度 82.1符號定義 82.2非遞迴式系統可靠度 92.3 遞迴式系統可靠度 152.4 正面表列及負面表列遞迴演算法 172.5 矩陣求解 18第三章 系統可靠度之 演算法 263.1線性系統 263.2環狀與線性系統之關係 363.3環狀系統 38第四章 結論 484.1研究結果 484.2未來研究方向 49參考文獻 50
 [1] I. Antonopoulou, and S. Papastavridis, “Fast recursive algorithm to evaluate the reliability of a circular consecutive-k-out-of-n: F system,” IEEE Transactions on Reliability, Vol. 36, pp. 83-84, 1987[2] R. Bollinger, “Direct computation for consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, R-31, pp.444-446, 1982.[3] R. Bollinger, and A. Salvia, “consecutive-k-out-of-n: F networks,” IEEE Transactions on Reliability, R-31, pp.53-55, 1982.[4] R. Bollinger, and A. Salvia, “consecutive-k-out-of-n: F system with sequential failures”, IEEE Transactions on Reliability, R-34, pp.43-45, 1985.[5] G. Chang, L. Cui, and F. Hwang, “Reliabilities for (n, f, k) systems”, Statistics and Probability Letters, Vol. 43, pp. 237-242, 1999.[6] G. Chang, L. Cui, and F. Hwang, “Reliabilities of consecutive-k Systems”, Kluwer, Boston, 2000. (Check again)[7] M. Chao, and G. Lin, “Economical design of large consecutive-k-out-of-n: F systems”, IEEE Transactions on Reliability, Vol. 33, pp. 411-413, 1984.[8] D. Chiang, and S. Niu, “Reliability of consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 30, pp. 87-89, 1981.[9] T. Cormen, C. Leiserson, and R. Rivest, “Introduction to Algorithms”, The MIT Press, pp. 587-599., 1996.[10] C. Derman, G. Lieberman, and S. Ross, “On the consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, R-31, pp.57-63, 1982.[11] D. Du, and F. Hwang, “A direct algorithm for computing reliability of a consecutive-k cycle”, IEEE Transactions on Reliability, Vol. 37, pp. 70-72, 1988.[12] L. Fratta, U. Montanari, “A Boolean algebra method for computing the terminal reliability in a communication network”, IEEE Transactions on Circuit Theory, CT-20, pp. 203-211, 1973.[13] I. Goulden, “Generating functions and reliabilities for consecutive k-out-of-n: F system”, Utilitas Mathematic, Vol. 32, pp. 141-147, 1987.[14] D. Gries, and G. Levin, “Computing Fibonacci numbers(and similarly defined functions) in log time”, Information Processing Letters, Vol. 11, pp. 68-69, 1980.[15] F. Hwang, “Fast solutions for consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 31, pp. 447-448, 1982.[16] F. Hwang, “Simplified reliabilities for consecutive-k-out-of-n: F system”, SIAM Journal on Algebraic and Discrete Methods, Vol. 7, pp. 258-264, 1986.[17] F. Hwang, “Invariant permutations for consecutive-k-out-of-n: F cycles”, IEEE Transactions on Reliability, Vol. 38, pp. 65-67, 1989.[18] F. Hwang, “An O(kn)-time algorithm for computing the reliability of a circular consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 42, pp. 161-162, 1993.[19] J. Kontoleon, “Reliability determination of a r-successive-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 29, p. 437, 1980.[20] W. Kuo, W. Zheng, and M. Zuo, “A consecutive-k-out-of-n: G system: the mirror image of a consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 39, pp. 244-253, 1990.[21] W. Kuo, and M. Zuo, “Optimal Reliability Modeling: Principles and Applications”, John Wiley & Sons Inc., 2003.[22] M. Lambiris, S. Papastavridis, “Exact reliability formulas for linear & circular consecutive-k-out-of-n: F systems,” IEEE Transactions on Reliability, Vol. 34, pp. 124-126, 1985.[23] M. Lin, “An algorithm for computing the Reliability of consecutive-k-out-of-n: F Systems”, IEEE Transactions on Reliability, Vol. 53, pp. 3-6, 2004.[24] M. Satam, “consecutive-k-out-of-n: F system: a comment”, IEEE Transactions on Reliability, Vol. 40, p. 62, 1991.[25] J. Shanthikumar, “Recursive algorithms to evaluate the reliability of a consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 31, pp. 442-443, 1982.[26] J. Wu, and R. Chen, “An O(kn) algorithm for a circular consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 41, pp. 303-305, 1992.[27] J. Wu, and R. Chen, “Efficient algorithm for reliability of a circular consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 42, pp. 163-164, 1993.[28] M. Zuo, and W. Kuo, “Design and performance analysis of consecutive-k-out-of-n structure”, Naval Research Logistics, Vol. 37, pp. 203-230, 1990.[29] M. Zuo, “Reliability of linear & circular consecutively-connected system”, IEEE Transactions on Reliability, Vol. 42, pp. 484-487, 1993.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 [1] 吳清沂，鍾震桂，「微機電系統技術簡介」，科儀新知， 2 陳志平, 以兩水相萃取系統純化蛋白質, 化工, 第42卷第3期, 48, 中華民國八十四年。

 1 二維連續(r,s)-out-of-(m,n):F系統可靠度分析 2 可靠度與維修策略在保固管理上之應用 3 考慮系統可靠度之增量製造單元設計 4 以雙向索引為基礎的音樂檢索系統 5 學習向量量化類神經網路應用於發光二極體晶圓缺陷檢測 6 半徑基底函數(RBF)類神經網路應用於LED晶圓缺陷檢測 7 結合主成份分析與模組化半徑基底函數類神經網路於影像語意內容分析問題 8 分割棋盤式交換組織結合輸入埠與交叉點緩衝佇列交換器效能分析 9 以SIP協定為基礎之無線網路零封包遺失Handoff機制研究 10 綠色無線通訊模式在IEEE802.16e網路環境之建立 11 設計一個自我探索實驗與發現規則電腦輔助學習環境 12 以電腦科學文獻自動建立本體論之架構 13 應用於CICQ交換核心之環狀多重投票機制 14 在山水畫中植樹 15 針對IEEE802.17彈性封包環網路服務品質特性之模擬分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室