跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾士燊
研究生(外文):Shih-Shen Chung
論文名稱:相同元件之連續k-out-of-n:F系統可靠度分
論文名稱(外文):Analysis on the Reliability of Consecutive-k-out-of-n: F Systems with i.i.d. Components
指導教授:吳哲賢吳哲賢引用關係
指導教授(外文):Jer-Shyan Wu
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:57
中文關鍵詞:可靠度連續k-out-of-n: F系統連續k系統
外文關鍵詞:ReliabilityConsecutive-k-out-of-n: F SystemConsecutive-k system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
連續k-out-of-n: F系統定義為n個元件排成線性,若連續k個元件損壞則系統失效;元件如果排成環狀,則稱為環狀連續 系統。本論文主要研究具有n個相同元件之,線性及環狀連續k-out-of-n: F系統可靠度。
對於n個相同元件之線性及環狀連續k-out-of-n: F系統可靠度,早期相關研究以正面表列觀念提出遞迴關係式演算法。本論文則以負面表列觀念提出遞迴關係式,並利用矩陣運算加速求解,最後提出更有效率之時間複雜度之演算法。
Consecutive-k-out-of-n: F system is a linear system of n components, such that the system fails if and only if any k consecutive components all fail; it is called circular consecutive-k-out-of-n: F system while all components form a circle. The thesis mainly studies on the reliability of consecutive-k-out-of-n: F system with i.i.d. components.
The past researches apply positive-listing concept to derive recurrence relations algorithms. In the thesis, we use negative-listing concept to derive recurrence relations, and speed up the running time via matrix computation, finally propose more efficient algorithms.
目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
第一章 導論 1
1.1背景 1
1.2 連續k系統 3
1.3文獻回顧 5
1.4研究動機與目的 7
第二章 連續k系統可靠度 8
2.1符號定義 8
2.2非遞迴式系統可靠度 9
2.3 遞迴式系統可靠度 15
2.4 正面表列及負面表列遞迴演算法 17
2.5 矩陣求解 18
第三章 系統可靠度之 演算法 26
3.1線性系統 26
3.2環狀與線性系統之關係 36
3.3環狀系統 38
第四章 結論 48
4.1研究結果 48
4.2未來研究方向 49
參考文獻 50
[1] I. Antonopoulou, and S. Papastavridis, “Fast recursive algorithm to evaluate the reliability of a circular consecutive-k-out-of-n: F system,” IEEE Transactions on Reliability, Vol. 36, pp. 83-84, 1987
[2] R. Bollinger, “Direct computation for consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, R-31, pp.444-446, 1982.
[3] R. Bollinger, and A. Salvia, “consecutive-k-out-of-n: F networks,” IEEE Transactions on Reliability, R-31, pp.53-55, 1982.
[4] R. Bollinger, and A. Salvia, “consecutive-k-out-of-n: F system with sequential failures”, IEEE Transactions on Reliability, R-34, pp.43-45, 1985.
[5] G. Chang, L. Cui, and F. Hwang, “Reliabilities for (n, f, k) systems”, Statistics and Probability Letters, Vol. 43, pp. 237-242, 1999.
[6] G. Chang, L. Cui, and F. Hwang, “Reliabilities of consecutive-k Systems”, Kluwer, Boston, 2000. (Check again)
[7] M. Chao, and G. Lin, “Economical design of large consecutive-k-out-of-n: F systems”, IEEE Transactions on Reliability, Vol. 33, pp. 411-413, 1984.
[8] D. Chiang, and S. Niu, “Reliability of consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 30, pp. 87-89, 1981.
[9] T. Cormen, C. Leiserson, and R. Rivest, “Introduction to Algorithms”, The MIT Press, pp. 587-599., 1996.
[10] C. Derman, G. Lieberman, and S. Ross, “On the consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, R-31, pp.57-63, 1982.
[11] D. Du, and F. Hwang, “A direct algorithm for computing reliability of a consecutive-k cycle”, IEEE Transactions on Reliability, Vol. 37, pp. 70-72, 1988.
[12] L. Fratta, U. Montanari, “A Boolean algebra method for computing the terminal reliability in a communication network”, IEEE Transactions on Circuit Theory, CT-20, pp. 203-211, 1973.
[13] I. Goulden, “Generating functions and reliabilities for consecutive k-out-of-n: F system”, Utilitas Mathematic, Vol. 32, pp. 141-147, 1987.
[14] D. Gries, and G. Levin, “Computing Fibonacci numbers(and similarly defined functions) in log time”, Information Processing Letters, Vol. 11, pp. 68-69, 1980.
[15] F. Hwang, “Fast solutions for consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 31, pp. 447-448, 1982.
[16] F. Hwang, “Simplified reliabilities for consecutive-k-out-of-n: F system”, SIAM Journal on Algebraic and Discrete Methods, Vol. 7, pp. 258-264, 1986.
[17] F. Hwang, “Invariant permutations for consecutive-k-out-of-n: F cycles”, IEEE Transactions on Reliability, Vol. 38, pp. 65-67, 1989.
[18] F. Hwang, “An O(kn)-time algorithm for computing the reliability of a circular consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 42, pp. 161-162, 1993.
[19] J. Kontoleon, “Reliability determination of a r-successive-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 29, p. 437, 1980.
[20] W. Kuo, W. Zheng, and M. Zuo, “A consecutive-k-out-of-n: G system: the mirror image of a consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 39, pp. 244-253, 1990.
[21] W. Kuo, and M. Zuo, “Optimal Reliability Modeling: Principles and Applications”, John Wiley & Sons Inc., 2003.
[22] M. Lambiris, S. Papastavridis, “Exact reliability formulas for linear & circular consecutive-k-out-of-n: F systems,” IEEE Transactions on Reliability, Vol. 34, pp. 124-126, 1985.
[23] M. Lin, “An algorithm for computing the Reliability of consecutive-k-out-of-n: F Systems”, IEEE Transactions on Reliability, Vol. 53, pp. 3-6, 2004.

[24] M. Satam, “consecutive-k-out-of-n: F system: a comment”, IEEE Transactions on Reliability, Vol. 40, p. 62, 1991.
[25] J. Shanthikumar, “Recursive algorithms to evaluate the reliability of a consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 31, pp. 442-443, 1982.
[26] J. Wu, and R. Chen, “An O(kn) algorithm for a circular consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 41, pp. 303-305, 1992.
[27] J. Wu, and R. Chen, “Efficient algorithm for reliability of a circular consecutive-k-out-of-n: F system”, IEEE Transactions on Reliability, Vol. 42, pp. 163-164, 1993.
[28] M. Zuo, and W. Kuo, “Design and performance analysis of consecutive-k-out-of-n structure”, Naval Research Logistics, Vol. 37, pp. 203-230, 1990.
[29] M. Zuo, “Reliability of linear & circular consecutively-connected system”, IEEE Transactions on Reliability, Vol. 42, pp. 484-487, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top