跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 11:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃海倫
研究生(外文):Hai-Lun Huang
論文名稱:二維連續(r,s)-out-of-(m,n):F系統可靠度分析
論文名稱(外文):Analysis on the Reliability of 2-Dimensional Consecutive (r, s)-out-of-(m, n): F Systems
指導教授:吳哲賢吳哲賢引用關係
指導教授(外文):Jer-Shyan Wu
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:系統可靠度演算法
外文關鍵詞:system reliabilityalgorithms
相關次數:
  • 被引用被引用:1
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
連續k-out-of-n: F系統可靠度,已廣泛被討論及研究運用。近年來相關研究也逐漸由一維延伸到二維、甚至多維可靠度系統。本論文主要研究二維連續(r,s)-out-of-m,n): F 系統可靠度。
針對二維系統可靠度,早期相關研究只提出上限值及下限值分析。YM演算法是唯一提出利用遞迴關係式求出正確值的方法。本論文首先利用較簡易遞迴關係式,設計出相同時間複雜度演算法;接著針對相同元件系統,將遞迴關係式轉換成矩陣法,最後推導出更精簡、更有效率的演算法。
Consecutive-k-out-of-n: F system has been extensively studied. Recently, related researches extend one-dimensional reliability model to two or d-dimensional versions . The thesis analyzes the reliability of 2-dimensional consecutive (r, s)-out-of-(m, n): F systems.
The past researches just discussed the upper bound and lower bound of system reliability. YM algorithm is the only one method to evaluate the exact system reliability via recurrence relations. In the thesis, we first apply more simple recurrence relations to derive algorithms; and then, for the identical component model, we transfer recurrence relations to matrices, and propose more efficient algorithms.
中文摘要 i
英文摘要 ii
誌 謝 iii
目錄 iv
第一章 導論 1
1.1 背景 2
1.2 連續k-out-n: F 系統可靠度 3
1.3 環狀連續k-out-n: F 系統可靠度 4
1.4 二維連續(r, s)-out-of-(m , n): F系統可靠度 5
1.5 文獻回顧 6
1.6 研究動機與目的 10
第二章 連續k-out-of-n: F系統可靠度 11
2.1 符號定義 12
2.2 連續k-out-of-n: F系統可靠度 13
2.2.1 Shanthikumar時間複雜度O(nk)演算法 15
2.2.2 Hwang時間複雜度O(n)演算法 18
2.3 環狀連續k-out-of-n: F系統可靠度 20
2.3.1 Hwang時間複雜度O(nk2)演算法 23
2.3.2 Wu和Chen時間複雜度O(nk)演算法 24
第三章 二維連續(r, s)-out-of-(m, n): F系統可靠度 25
3.1 二維系統可靠度 25
3.2 YM演算法 27
3.2.1 符號定義 27
3.2.2 演算法分析 29
3.2.3 範例及實驗結果 31
3.2.4 時間複雜度分析 37
第四章 利用矩陣計算二維系統可靠度 39
4.1 遞迴法 39
4.1.1 時間複雜度分析 44
4.2 矩陣法 45
4.2.1 時間複雜度分析 50
第五章 結論 52
5.1研究成果 52
5.2未來研究方向 53
參 考 文 獻 54
[1]A. Salvia, and W. Lasher, “2-Dimensional consecutive-k-out-of-n: F models”, IEEE Trans. Reliability, vol. 39, pp. 382-385, 1990.
[2]Antonopoulou. I, and S. Papastavridis, “Fast recursive algorithm to evaluate the reliability of a circular consecutive-k-out-of-n: F system,” IEEE Transactions on Reliability, Vol. 36, pp. 83-84, 1987
[3]C. Derman, G. Lieberman, and S. Ross, “On the consecutive-k out- of-n: F system”, IEEE Trans. Reliability, vol. 31, pp. 57-63, 1982.
[4]D. Chiang, and S. Niu, “Reliability of consecutive-k-out-of-n: F system”, IEEE Trans. Reliability, vol. 30, pp. 87-89, 1981.
[5]F. Hwang, “Fast solutions for consecutive-k -out-of-n: F system”, IEEE Trans. Reliability, vol. 31, pp. 447–448, 1982.
[6]F. Hwang and P. Wright, “An algorithm for the consecutive-k-out-of-n: F system”, IEEE Trans. Reliability, vol. 44, pp. 28–131, 1995.
[7]H. Yamamoto and M. Miyakawa, “Reliability of a linear connected-(r s)-out-of-(m, n): F lattice system”, IEEE Trans. Reliability, vol. 44, pp. 333–336, 1995.
[8]F. Hwang, “An O (nk)-time algorithm for computing the reliability of a circular consecutive-k-out-of-n:F system,” IEEE Trans on Reliability, Vol. 42 , pp. 161-162, 1993.
[9]J. Shantikumar, “Recursive algorithm to evaluate the reliability of a consecutive-k-out-of-n: F system”, IEEE Trans. Reliability, vol. 31, pp. 442-443, 1982.
[10]J. Abraham, ‘An improved method for network reliability”, IEEE Trans. Reliability, vol. 28, pp. 58-61, 1979.
[11]J. Wilson, “An improved minimizing algorithm for sum of disjoint products”, IEEE Trans. Reliability, vol. 39, pp. 42-45, 1990.
[12]J. Fu, “Bounds for reliability of large consecutive k-out-of-n: F systems with unequal component reliability”, IEEE Trans. Reliability vol. 35, pp. 316-319, 1986.
[13]J. Kontoleon, “Reliability Determination of a r-Successive-out-of-n: F System”, IEEE Trans. Reliability, vol. , p. 437, 1980.
[14]J. Chang, R. Chen, and F. Hwang, “A fast reliability-algorithm for the circular consecutive-weighted-k-out-of-n: F system,” IEEE Trans on Reliability, Vol. 47, pp. 472-474, 1998.
[15]M. Chao, J. Fu, and M. Koutrces, “Survey of reliability studies of consecutive k-out-of-n: F & related systems”, IEEE Trans. Reliability, vol. 44, pp. 120–127, 1995.
[16]M. Zuo, “Reliability & design of 2-dimensional consecutive-k-out-of n systems”, IEEE Trans. Reliability, vol. 42, pp. 488-490, 1993.
[17]M Koutras, G. Papadopoulos, and S. Papastavridis, “Reliability of 2-Dimensional Consecutive-k-out-of-n: F system”, IEEE Trans. Reliability, vol. 42, pp. 658-661, 1993.
[18]M. Locks, “A minimizing algorithm for sum of disjoint products”, IEEE Trans. Reliability, vol. 36, pp. 445-453, 1987.
[19]R. Bollinger, and A. Salvia, “Consecutive-k-out-of-n: F networks”, IEEE Trans. Reliability, vol. 31, pp. 53-56, 1982.
[20]R. Chen, and F. Hwang, “Failure distributions of consecutive-k-out of- n: F systems”, IEEE Trans. Reliability, vol. 34, pp. 338-341, 1985.
[21]T. Boehme, A. Kossow, and W. Preuss, “A generalization of consecutive-k-out-of-n: F systems”, IEEE Trans. Reliability, vol. 41, pp. 45 1-457, 1992.
[22]J. Wu, and R. Chen, “An O (kn) algorithm for a circular consecutive-k-out-of-n: F system,” IEEE Transactions on Reliability, Vol. 41, pp. 303-305, 1992.
[23]J. Wu, and R. Chen, “Efficient algorithm for reliability of a circular consecutive-k-out-of-n: F system”, IEEE Trans on Reliability, Vol. 42, pp. 163-164, 1993.
[24]W. kuo, and M. zno, “Optimal reliability modeling : Principles and Application ”,John wiley & Sons Inc,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top