(3.237.97.64) 您好!臺灣時間:2021/03/04 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林沅勳
論文名稱:自動化立體產品包裝及裝箱研究
論文名稱(外文):Research on Automatic Three-Dimensional Product Packing
指導教授:馬恆馬恆引用關係
學位類別:碩士
校院名稱:中華大學
系所名稱:科技管理學系(所)
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:52
中文關鍵詞:不規則裝載包裝容器裝載
外文關鍵詞:Rectangle packingIrregular Packing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去產品包裝設計大都為經驗法則來完成,且安排也僅考慮數個產品零件的組合。本研究將產品包裝設計的流程延伸至裝箱最佳化的問題,當包裝安排位置時同時考量最多裝箱的產品組合數量,進而降低包裝及運輸成本。本研究提出新的實體表示法,稱為柱狀長條體表示法,用來表示立體零件,便於電腦計算最佳位置時使用。在搜尋最佳組合零件寬度、深度及高度,採用分支界限法來搜尋最佳組合。從實例上也證明此自動化立體產品包裝及裝箱的可行性。
In the past the product packing design mostly completed for the experience principle, also the arrangement also only considered several products components the combination. This research extends the product packing design flow to the packing optimization question, when the packing arranges the position simultaneously considers most packing the product combination quantity, then reduces the packing and the transportation cost. This research proposed the new entity method of portrayal, is called the columnar sliver of body method of portrayal, uses for to express the three-dimensional components, are advantageous for when the computer computation best position uses. In the search best component parts width, the depth and the altitude, use the branch boundary law to search for the best combination. Also proves this automated three-dimensional product packing and the packing feasibility from the example.
摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範疇 2 1.4 主要貢獻 3 第二章 文獻探討 4 2.1 三維的堆疊探討 4 2.2 三維的零件堆疊 5 第三章 利用柱狀表示法於立體產品包裝及裝箱 8 3.1 物件表達方法 8 3.1.1研究假設 9 3.1.2柱狀圖形表示法 10 3.1.3零件柱狀圖形表示法 11 3.1.4包裝容器柱狀圖形表示法 13 3.2 包裝容器堆疊圖形表示法 17 3.2.1包裝容器零件堆疊流程 17 3.2.2可行堆疊位置 21 3.3 堆疊分支界限法 31 第四章 實例探討 35 4.1 自動化立體產品包裝及裝箱實例一說明 35 4.1.1 實例一本研究提出方法結果 35 4.1.2 實例一單元化方法結果 36 4.1.3 實例一結果分析 36 4.2 自動化立體產品包裝及裝箱實例二說明 38 4.2.1 實例二本研究提出方法結果 38 4.2.2 實例二單元化方法結果 39 4.2.3 實例二結果分析 39 4.3 自動化立體產品包裝及裝箱實例三說明 41 4.3.1 實例三本研究提出方法結果 42 4.3.2 實例三單元化方法結果 43 4.3.3 實例三結果分析 43 4.4 自動化立體產品包裝及裝箱實例四說明 45 4.4.1 實例四本研究提出方法結果 46 4.4.2 實例四單元化方法結果 47 4.4.3 實例四結果分析 47 第五章 結論與建議 49 5.1 結論 49 5.2 後續建議 49 參考文獻 50
1. 田邦廷(2002),「長方體物件堆疊問題解法之研究」。大葉大學工業工程研究所碩士論文。 2. 黃玟錫(2001),「不規則物件排列問題解法之研究」,大葉大學工業工程研究所碩士論文。 3. 鍾正豪(2003),「多重限制容器裝填問題最佳化系統之研究」,華梵大學工業管理學系碩士論文。 4. Abdou, G., and Yang, M. (1994), “A Systematic Approach for the Three-Dimensional Palletization Problem,” International Journal of Production Research, Vol. 32, No.10, pp. 2381-2394. 5. Beasley, J.E. (1985), “Algorithms for Unconstrained Two-Dimensional Guillotine Cutting,” Journal of the Operational Research Society, Vol. 36, No. 4, pp. 297-306. 6. Bennell, J.A. and Dowsl, K.A. (1999), “A Tabu Thresholding Implementation for the Irregular Stock Cutting Problem,” International Journal Production Research, Vol. 37, No. 18, pp. 4259-4275. 7. Bischoff, E.E. and Marriott, M.D. (1990), “A Comparative Evaluation of Heuristics for Container Loading,” European Journal of Operational Research, Vol. 44, No. 22, pp. 267-276. 8. Bischoff, E.E. and Ratcliff, M.S.W. (1995), “Loading Multiple Pallets,” Journal of the Operational Research Society, Vol. 46, No. 11, pp. 1322-1336. 9. Bischoff, E.E., F. Janetz and Ratcliff, M.S.W. (1995), “Loading Pallets With Non-Identical Items,” European Journal of Operational Research Vol. 84, No. 3, pp. 681-692. 10. Bortfeldt, A., H. Gehring and Mack, D. (2003), “A Parallel Tabu Search Algorithm for Solving,” Parallel Computing, Vol. 29, No. 5, pp. 641-662. 11. Boschetti, M.A. (2004), “New Lower Bounds for The Three-Dimensional,” Discrete Applied Mathematics, Vol. 140, No. 1-3, pp. 241–258. 12. Chen, C.S., S.M. Lee and Shen, Q.S. (1995), “An Analytical Model for The Container Loading Problem,” European Journal of Operational Research, Vol. 80, No. 1, pp. 68-76. 13. Dori, D. and Ben-Bassat, M. (1984), “Efficient Nesting of Congruent Convex Figures,” Communications of the ACM, Vol. 27, No. 3, pp. 228-235. 14. Faroe, O., D. Pisinger and Zachariasen, M. (2003), “Guided Local Search for The Three-Dimensional Bin Packing Problem,” INFORMS Journal on Computing Forthcoming, Vol. 15, No. 3, pp. 267-283. 15. Fischer, A.D. and Dagli, C.H. (2004), “Employing Subgroup Evolution for Irregular-Shape Nesting,” Journal of Intelligent Manufacturing, Vol. 15, No. 2, pp.187-199. 16. Francis, E.H., T.Y. Chong and Lee, F.C. (2002), “Pattern Nesting on Irregular-Shaped Stock Using Genetic Algorithms,” Engineering Applications of Artificial Intelligence, Vol. 15, No. 6, pp. 551-558. 17. Freeman, H. and Shapira, R. (1975), “Determining the Minimum Area Encasing Rectangle for An Arbitrary Closed Curve,” Communications of the ACM, Vol. 81, No. 7, pp. 409-413. 18. Gehring, M., K. Menscher and Meyer, M. (1990), “A Computer-Based Heuristic for Packing Pooled Shipment Containers,” European Journal of Operational Research, Vol. 44, No. 22, pp. 277-288. 19. Gilmore, P.C. and Gomory, R.E. (1961), “A Lnear Programming Approach to the Cutting Stock Program,” Operation Research Vol. 9, No. 6, pp. 848-859. 20. Gilmore, P.C. and Gomory, R.E. (1965), “Multistage Cutting Stock Problems of Two and More Dimensions,” Operations Research, Vol. 13, No. 1, pp. 94-120. 21. Gomes, A.M. and Oliveira, J.F. (2002), “A 2-Exchange Heuristic for Nesting Problems,” European Journal of Operation Research, Vol. 141, No. 2, pp. 359-370. 22. Jakobs, S. (1996), “On Genetic Algorithms for the Packing of Polygons,” European Journal Operation Research, Vol. 88, No. 1, pp. 165-181. 23. Lodi, A., S. Martello and Vigo, D. (2002), “Heuristic Algorithms for The Three-Dimensional Bin,” European Journal of Operational Research, Vol. 141, No. 2, pp. 410-420. 24. Ma, H., D.J. Cannon and Kumara, S.R.T. (1995), “A Scheme Integrating Neural Networks for Real-Time Robotic Collision Detection,” Proceedings of 1995 IEEE International Conference on Robotics and Automation, Vol. 1, pp. 881-886. 25. Martello, S., D. Pisinger and Vigo, D. (2000), “The Three-Dimensional Bin Packing Problem,” Operations Research, Vol. 48, No. 2, pp. 256-267. 26. Ngoi, B.K.A., M.L. Tay and Chua, E.S. (1994), “Applying Spatial Representation Techniques to the Container Packing Problem,” International Journal of Production Research, Vol. 32, No. 11, pp. 111-123. 27. Pisinger, D. (2002), “Heuristics for The Container Loading Problem,” European Journal of Operational Research, Vol. 141, No. 2, pp. 382-392. 28. Prasad, Y.K.D.V., S. Somasundaram and Rao, K.P.(1995), “A Sliding Algorithm for Optimal Nesting Arbitrarily Shaped Sheet Metal Blanks,” International Journal Production Research, Vol. 33, No. 6, pp. 1505-1520. 29. Ramesh, B.A. and Ramesh, B.N.(2001), “A Generic Approach for Nesting of 2-D Parts in 2-D Sheets Using Genetic and Heuristic Algorithms,” Computer-Aided Design, Vol. 33, No. 33, pp. 879-891. 30. Scheithauer, G. (1991), “A Three-Dimensional Bin Packing Algorithm,” Journal of Information Processing and Cybernetics, Vol. 27, pp. 263-271. 31. Scheithauer, G. (1992), “Algorithms for The Container Loading Problem,” In Operations Research Proceedings 1991, Springer, Berlin, pp. 445–452. 32. Zhihong, J., I. Takahiro and Katsuhisa, O. (2003), “The Three-Dimensional Bin Packing Problem and Its Practical Algorithm,” International Journal, Vol. 46, No. 1, pp. 60-66.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔