(3.238.186.43) 您好!臺灣時間:2021/03/01 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧俊偉
論文名稱:運用X-Factor貢獻度概念於批量加工環境績效改善之研究
論文名稱(外文):Research of the X-Factor contribution on performance improvement in batch process
指導教授:杜瑩美杜瑩美引用關係
學位類別:碩士
校院名稱:中華大學
系所名稱:科技管理學系(所)
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:生產週期時間批量加工製程解批加工製程X因子
外文關鍵詞:Cycle TimeBatch ProcessUnbatch ProcessX-Factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
產品生產週期時間(Cycle Time, CT)對於製造業來說是個相當重要的生產規劃因子,有效的Cycle Time估算有助於產品交期的預估以及產能規劃。然而由於晶圓製造廠製程的高度複雜性,造成管理人員對於在估算Cycle Time上,往往難以獲得較佳的近似值,而無法做出更有效的管理。 然而對於Cycle Time的改善方式,過去許多學者大多針對瓶頸機台的生產排程來進行改善,以達到降低Cycle Time或增加產出的目的。而2006年Delp et al.學者提出另一種選擇改善機台的衡量新指標,稱為完整的X-Factor貢獻度指標(Complete X-Factor Contribution, CXC),其研究證明對於系統內所謂的高CXC指標之加工站進行改善,對於Cycle Time的降低也有其不錯的效果。 目前的晶圓製造廠中,批量加工製程(Batch Process)是一道必要且常見的加工方式,可惜的是Delp所提出的CXC的計算式中,對於此製程現象卻未加以考量。然而晶圓製造廠中,批量製程的加工時間通常都較為冗長,如將CXC的觀念運用在這樣的環境下,勢必造成批量加工站極容易一直擁有高CXC之現象。而在此情況下批量機台是否還是優先進行改善的機台是個值得研究的議題。有鑒於此,本研究首先利用GI/G/m之等候模式構建批量與解批機台之Cycle Time估算模式,而後結合X-Factor觀念、CXC的概念提出一套修正後之機台選擇指標,吾人稱之修正後之X-Factor貢獻度指標(Adjusted X-Factor Contribution, AXFC)。 而由本研究的模擬結果發現,運用AXFC於Batch Process的環境下,進行機台改善的選擇研究,先前Delp et al.所提出之觀點在某些環境下仍然是成立的,其中也發現其實在運用AXFC的觀念時,仍有些部份是值得調整與探討的。所以期望經由調整後之AXFC指標,能夠提供管理者在運用上更能準確的判斷出較適合的改善機台站,來加以改善提升廠內績效。
摘 要 i 誌 謝 iii 目 錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1研究背景動機 1 1.3研究範圍與限制 3 1.4研究架構 3 第二章 文獻回顧與探討 6 2.1產品生產週期時間 6 2.2 X-FACTOR概念介紹 9 2.3批量生產製程特性 13 2.4結論 17 第三章 產品生產週期時間貢獻度之計算 18 3.1問題範圍與限制 18 3.2等候理論的運用 19 3.3建構產品生產週期時間估計式 20 3.3.1批量加工之環境修正 20 3.3.2解批加工之環境修正 23 3.3.3.迴流加工製程之修正 29 3.4修正後之X-FACTOR貢獻度模式 29 3.5總結 30 第四章 模式驗證與機台改善後績效變化之探討 32 4.1產品生產週期時間估算模式驗證 32 4.1.1範例環境設定 32 4.1.2範例估算 34 4.1.3模擬驗證與分析 42 4.2AXFC模式之運用與探討 45 4.2.1實驗環境介紹 46 4.2.2實驗設計 48 4.2.3實驗結果與分析 49 4.3總結 59 第五章 結論與建議 62 5.1結論 62 5.2未來研究建議 63 參考文獻 64 附錄 一 67 附錄 二 68
1. 林則孟(2001),「系統模擬-理論與應用」,滄海書局。 2. 黃宏文(2002),「晶圓製造廠區段基礎式週期時間算法」,交通大學工業工程與管理學系博士班論文。 3. 劉采風(2006),「時間限制下晶圓廠批量機台之現場管控模式」,中華大學科技管理就所碩士班論文。 4. 劉醇玄(2006),「晶圓製造廠內等候時間限制問題下批量生產機台之產能決策模式」,交通大學工業工程與管理學系碩士班論文。 5. Adams, J., E. Balas and Zawack, D. (1988), “The Shifting Bottleneck Procedure for Job Shop Scheduling,” Manage. Sci., Vol. 34, No. 3, pp. 391-401. 6. Chen, H., J.M Harrison, A. Mandelbaum, V. Ackere and Wein, L.M. (1998), “Empirical Evaluation of a Queueing Network Model for Semiconductor Wafer Fabrication,” Operations Research, Vol. 36, No. 2, pp. 202-215. 7. Chung, S.H. and Huang, H.W. (1999), “The Block-Based Cycle Time Estimation Algorithm for Wafer Fabrication Factories,” International Journal Of Industrial Engineering, Vol. 6, No. 4, pp. 307-316. 8. Delp, D., J. Si and Fowler, J.W. (2006), “The Development of the Complete X-factor Contribution Measurement for Improving Cycle Time and Cycle Time Variability,” IEEE Transactions on Semiconductor Manufacturing, Vol. 19, No. 3, pp. 352-362. 9. Delp, D., J. Si, Y. Hwang, B. Pei and Fowler, J. (2005), “Availability adjusted X-factor,” Int. J. Production Res., Vol. 43, No. 18, pp. 3933-3953. 10. Enns, S.T. (1995), “A dynamic forecasting model for job shop flowing prediction and tardiness control,” International Journal of Production Research, Vol. 33, No. 5, pp. 1295-1312. 11. Fowler, J.W., D.T. Phillips and Hogg, G.L. (1992), “Real-time Control of Multi-product Bulk-Service Semiconductor Manufacturing Process,” IEEE Transactions on Semiconductor Manufacturing, Vol. 5, No. 2, pp. 158-163. 12. Fowler, J.W., N. Phojanamongkolkij, J.K. Cochran and Montgomery, D.C. (2002), “Optimal Batching in a Wafer Fabrication Facility Using a Multi-product G/G/c Model with Batch Processing,” International Journal of Production Research, Vol. 40, No. 2, pp. 275-292. 13. Goldratt, E.M. and Cox, J. (1992), The Goal: A Process of Ongoing Improvement, 2nd ed., USA: North River Press. 14. Hopp, W.J. and Spearman, M.L. (2001), Factory Physics, 2nd ed., AW: McGraw-Hill. 15. Kishimoto, M., K. Ozawa and Martin, D.P. (2001), “Optimized Operations by Extended X-factor Theory Including Unit Hours Concept,” IEEE Trans. Semiconduct Manufact, Vol. 14, No. 3, pp. 187-195. 16. Lee, Y.H., J. Park and Kim, S. (2002), “Experimental Study on Input and Bottleneck Scheduling for A Semiconductor Fabrication Line,” IIE Trans., Vol. 34, No. 2, pp. 179-190. 17. Martin, D.P. (1996), “Optimizing Manufacturing Asset Utilization,” 1996 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). 18. Martin, D.P. (1998), “The Advantages of Using Short Cycle Time Manufacturing (SCM) Instead of Continuous Flow Manufacturing (CFM),” in Proc. 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conf. (ASMC), pp. 43-49. 19. Martin, D.P. (1997), “How the Law of Unanticipated Consequences can Nullify the Theory of Constraint: The Case for Balanced Capacity in a Semiconductor Manufacturing Line,” 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp. 380-385. 20. Meyersdorf, D. and Yang, T. (1997), “Cycle Time Reduction for Semiconductor Wafer Fabrication Facilities,”1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 418-423. 21. Neuts, M.F. (1967), “A General Class of Bulk Queues with Poisson Input,” Annals of Mathematical Statistics,” Vol. 38, No. 3, pp. 759-770. 22. Park, Y., S. Kim and Jun, C.H. (2002), “Mean Value Analysis of Re-entrant Line with Batch Machines and Multi-class Jobs,” Computers and Operations Research, Vol. 29, No. 8, pp. 1009-1024. 23. Robinson, J.K., J.W. Fowler and Bard, J. F. (1995), “The Use of Upstream and Downstream in Scheduling Semiconductor Batch Operation,” International Journal of Production Research, Vol. 33, No. 7, pp. 1849-1869. 24. Rulkens, H.J.A., E.J.J. Van Campen, J. Van Herk and Rooda, J.E. (1998), “Batch Size Optimization of A Furnace and Pre-clean Area By Using Dynamic Simulations,” 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 439-444. 25. Sattler, L. (1996), “Using Queueing Curve Approximation in a Fab to Determine Productivity Improvement,” 1996 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 140-145 26. Schoemig, A.K. (1999), “On the Corrupting Influence of Variability in Semiconductor Manufacturing,” 1999 Winter Simulation Conf. (WSC), Vol. 1, pp. 837-842. 27. Srivatsan, N. and Kempf, K. (1995), “Effective Modeling of Factory Throughput Times,” 1995 IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp. 377-383. 28. Tu, Y.M. and Chen, H.N. (2005), “The Influence of Machine Downtime in a Queuing System - A Simulation Study,” APIEMS 2005 Conference. 29. Tu, Y.M. and Liou, C.S. (2006), “Capacity Determination Model with Time Constraints and Batch Processing in Semiconductor Wafer Fabrication,” Journal of the Chinese Institute of Industrial Engineers, Vol. 23, No. 3, pp. 192-199. 30. Van Der Zee, D.J., A. Van Harten and Schuur, P.C. (1997), “Dynamic Job Assignment Heuristics for Multi-server Batch Operations ─ A Cost Based Approach,” International Journal of Production Research, Vol. 35, No. 11, pp. 3063-3093. 31. Vig, M.M. and Dooley, K.J. (1991), “Dynamic Rules for Due-Date Assignment,” International Journal of Production Research, Vol. 29, No. 7, pp. 1361-1377. 32. Weng, W.W. and Leachman, R.C. (1993), “An Improved Methodology for Real-time Production Decisions at Batch-process Workstation,” IEEE Transactions on Semiconductor Manufacturing, Vol. 6, No. 3, pp. 219-225. 33. Whitt, W. (1983), “The Queueing Network Analyzer,” The Bell System Technical Journal, Vol. 62, pp. 2779-2815. 34. Whitt, W. (1993), “Approximations for The GI/G/m Queue,” Production and Operations Management, Vol. 2, No. 2, pp. 114-161.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔