(3.238.186.43) 您好!臺灣時間:2021/02/28 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐峻瑋
研究生(外文):Jiun-Wei Ou
論文名稱:非同調幫浦拉曼光纖放大器的增益與雜訊因子漣波之最佳化設計
論文名稱(外文):Optimal design of gain and noise figure ripples for Raman fiber amplifier using incoherent pumping
指導教授:溫 盛 發
指導教授(外文):Senfar Wen
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:分散式拉曼光纖放大器雜訊漣波增益漣波
外文關鍵詞:distributed fiber Raman amplifiernoise figure ripplegain ripple
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究重點,主要是對於光放大器的特性作最佳化的方法。使用非同調光幫浦的分散式拉曼光纖放大器,預先指定其尖峰功率之波長,此波長稱之為極值波長。我們以應用於100km的TW-Reach分散式拉曼光纖放大器為設計範例,考慮雙向幫浦所設計的放大器,要求在70-nm信號頻寬中有低於0.3dB增益差和低於0.3dB雜訊差。對於使用雙向幫浦的分散式拉曼光纖放大器,我們先固定順向幫浦頻譜的極值波長,選定ㄧ可以使增益漣波降低的幫浦光波段,再去設定逆向幫浦頻譜的極值波長,以降低雜訊漣波。由研究發現最佳化的雙向幫浦具有特定的結構。固定順向幫浦光的極值波長,設計位移100nm附近的逆向幫浦波長頻帶之功率頻譜密度最小,可以得到最低的等效雜訊漣波。
The method to design the incoherent pump power spectrum with pre-assigned extremum pump wavelength for the distributed fiber Raman amplifier (DFRA) is presented. Two 100-km TW-Reach DFRAs using bidirectional pumping respectively are taken as examples, in which the gain ripple is less than 0.3 dB and NF ripple less than 0.4 dB over 70-nm bandwidth. For the DFRA using bidirectional pumping, first we set the extremum wavelength of co-pump and chose a pump band resulting low gain ripple, and then set extremum wavelength of counter-pump to decrease the noise figure ripple. The result shows optimized bidirectional pump power spectral has a specific structure. We found that low gain ripple and noise figure ripple can be achieved by selling to set 100nm separation between the extremum wavelength of co-pump and the wavelength of minimum extremum spectral power density of counter-pump, which is about Ramam gain bandwidth.
中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 1 第二章 光放大器介紹 3 2.1光纖拉曼放大器 4 2.2摻鉺光纖放大器EDFA(Erbium-Doped Fiber Amplifier) 5 第三章 拉曼光纖放大器工作原理 10 3.1 拉曼光纖放大器的基本原理 10 激發性拉曼散射(SRS) 10 拉曼增益係數 (gUBURUBU) 10 拉曼增益 (Gain) 10 拉曼增益飽和(Raman gain saturation) 12 雜訊指數 (noise figure) 13 光纖傳輸波動方程式 13 3.2 分散式拉曼光纖放大器(distribution FRA) 之架構 14 第四章 光纖放大器設計 18 4-1 放大器模型和設計方法 18 4.2 使用雙向幫浦設計DFRA 25 第五章 結論 49 5-1 研究結果 49 5-2改善與檢討 50 參 考 文 獻 52
1 Senfar Wen, Chun-Chia Chen, and Jiun-Wei Ou “Optimizing the incoherent pump spectrum of low-gain-ripple distributed fiber Raman amplifier for a given main pump wavelength”, Optics Express, vol. 15, Issue 1, pp.45-55, 2007 2 Senfar Wen “Design of the pump power spectrum for the distributed fiber Raman amplifiers using incoherent pumping” Optics Express, vol. 14, Issue 9, pp.3752-3762, 2005 3. J. Kani, M. Jinno, and K. Oguchi,” Fibre Raman amplifier for 1520 nm band WDM transmission,” Electron. Lett., 34, pp. 1745-1747, 1998. 4. Y. Emori, K. Tanaka, and S. Namiki,” 100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett., 35, pp. 1355-1356, 1999. 5. S. Namiki and Y. Emori,” Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Topics Quantum Electron., 7, pp. 3-16, 2001. 6. H. S. Seo, K. Oh, and U. C. Paek,” Simultaneous amplification and channel equalization using Raman amplifier for 30 channels in 1.3-μm band,” J. Lightwave Technol., 19, pp. 391-397, 2001. 7. P. C. Reeves-Hall, D. A. Chestnut, C. J. S. De matos, and J. R. Taylor,” Dual wavelength pumped L- and U- band Raman amplifier,” Electron. Lett., 37, pp. 883-884, 2001. 8. L. D. Garret, M. Eiselt, R. W. Tkach, V. Dominic, R. Waarts, D. Giltner, and D. Mehuys,” Field demonstration of distributed Raman amplification with 3.80dB Q-improvement for 5×120-km transmission,” IEEE Photon. Technol. Lett., 13, pp. 157-159, 2001. 9. Y. Emori, S. Kado, and S. Namiki,” Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diode,” Opt. Fiber Technol., 8, pp. 107-122, 2002. 10. D. A. Chestnut and J. R. Taylor,” E-band fibre Raman amplifier and implications of 1.4 μm water absorption,” Electron. Lett., 39, pp. 1194-11196, 2003. 11. A. Mori, H. Masuda, K. Shikano, and M. Shimizu,” Ultra-wide-band tellurite-based fiber Raman amplifier,” J. Lightwave Technol., 21, pp. 1300-1306, 2003. 12. J. Bromage,” Raman amplification for fiber communications systems,” J. Lightwave Technol., 22, pp. 79-93, 2004. 13. Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar,” 80nm ultra-wideband erbium-doped silica fiber amplifier,” Electron. Lett., 33, pp. 1965-1967, 1997. 14. R. D. Muro, D. Lowe, and S. Wilson,” Broad-band amplification using a novel amplifier topology,” IEEE Photon. Technol. Lett., 13, pp. 1073-1075, 2001. 15. S. Hwang, K.-W. Song, H.-J. Kwon, J. Koh, Y.-J. Oh, and K. Cho,” Broad-band erbium-doped fiber amplifier with double-pass configuration,” IEEE Photon. Technol. Lett., 13, pp. 1289-1291, 2001. 16. S. W. Harun, P. Poopalan, and H. Ahmad,” Gain enhancement in L-band EDFA through a double-pass technique,” IEEE Photon. Technol. Lett., 14, pp. 296-298, 2002. 17. H. Ono, M. Yamada, and M. Shimizu,” S-band erbium-doped silica fibre amplifier with flattened-gain of over 21 dB,” Electron. Lett., 38, pp. 1084-1086, 2002. 18. S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad,” Double-pass L-band EDFA with enhanced noise figure characteristics,” IEEE Photon. Technol. Lett., 15, pp. 1055-1057, 2003. 19. Y.-H. Lu and S. Chi,” Two-stage L-band EDFA applying C/L-band wavelength-division multiplexer with the counterpropagating partial gain-clamping,” IEEE Photon. Technol. Lett., 15, pp. 1710-1712, 2003. 20. Q. Jiang, X. Liu, Q. Wang, and X. Feng,” Dynamic gain control in the serial structure C+L wide band EDFA,” IEEE Photon. Technol. Lett., 16, pp. 87-89, 2004. 21. A. Yariv, “Signal-to-noise considerations in the fiber links with periodic or distributedoptical amplification,” Opt. Lett., 15, pp. 1064- 1066, 1990. 22. D. N. Chen and E. Desurvire,” Noise performance evaluation of distributed erbium-doped fiber amplifiers with bidirectional pumping at 1.48 μm,” IEEE Photon. Technol. Lett., 4, pp. 52-55, 1992. 23. S. Wen and S. Chi,” Distributed Erbium-Doped Fiber Amplifiers with Stimulated Raman Scattering,” IEEE Photon. Technol. Lett., 4, pp. 189-192, 1992. 24. S. Wen and S. Chi,” Characteristics of the Gain and Signal-To-Noise Ratio of a Distributed Erbium-Doped Fiber Amplifier,” J. Lightwave Technol., 12, pp. 1869-1878, 1992. 25. K. Rottwitt, J. H. Povlsen, A. Bjarklev, O. Lumholt, B. Pedersen, and T. Rasmussen,” Noise in distributed erbium-doped fibers,” IEEE Photon. Technol. Lett., 5, pp. 218-221, 1993. 26. S. Wen,” Distributed erbium-doped fiber amplifier for soliton transmission,” Opt. Lett., 19, pp. 22-24, 1994. 27. C. Lester, K. Bertilsson, K. Rottwitt, P. A. Anderkson, M. A. Newhouse, and A. J. Antos,” Soliton transmission over more than 90 km using distributed erbium-doped fibers,” Electron. Lett., pp. 219-220, 1995. 28. H. Kawakami and T. Kataoka,” 10 Gbit/s signal transmission in a 1600 km line employing distributed erbium-doped fiber amplifier to suppress the nonlinear effect,” Proc. OAA’95, Davos, Switzerland, 1995, FB4, pp. 140-143. 29. A. Altuncu, L. Noel, W. A. Pender, A. S. Siddiqui, T. Widdowson, A. D. Ellis, M. A. Newhouse, A. J. Antos, G. Kar, and P. W. Chu,” 40 Gbit/s error free transmission over a 68 km distributed erbium-doped fiber amplifier,” Electron. Lett., 32, pp. 233-234, 1996. 30. A. Altuncu, A. S. Siddiqui, and A. D. Ellis,” Spectral characteristics of long span distributed erbium-doped fiber amplifiers (DEDFAs) for soliton transmission,” Electron. Lett., 33, 1558-1559, 1997. 31. H. Kawakami, T. Kataoka, Y. Miyamoto, K. Hagimoto, and H. Toba,” Transmission line with distributed erbium-doped fiber amplifier,” J. Lightwave Technol., 12, pp. 1887-18891, 2001. 32. I. Mandelbaum and M. Bolshtyansky, “Raman amplifier model in singlemode optical fiber,” IEEE Photon. Technol. Lett. 15, 1704–1706 (2003). 33.T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett. 17, 1175-1177 (2005). 34. Aoki “Properties of fiber Raman amplifiers and their applicability to Digital Optical communication systems”, Journal of Lightwave Thchnol., vol. 6, pp. 1225-1239, 1998 35. J. More, B. Garbow, and K. Hillstrom, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, (Argonne National Laboratory, Argonne, Illinois, 1980).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔