(3.236.175.108) 您好!臺灣時間:2021/02/28 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宜勳
論文名稱:衝壓引擎極音速之震波高階析捕捉
指導教授:牛仰堯
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:衝壓引擎進氣道Godunov通量分離法黎曼解
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文目的發展一套MUSCL type之真實黎曼解求解衝壓引擎內部震波捕捉。吾人採用Eulerian-Lagrangian (Unified)整合座標系統之Navier-Stokes方程式進行計算,此座標系統可避免Eulerian 座標系統過度的數值消散以及Lagrangian座標系統的嚴重網格變形,且可維持網格之間角度。數值方面,時間離散與空間離散分別使用Strang-splitting和Godunov通量分離法增加數值精度與穩定性,並且依據1982年,NASA分析衝壓引擎之進氣道外型進行數值模擬並進行比較,計算結果顯示本文所發展於unified座標系統下之MUSCL type之真實黎曼解可準確捕捉到震波以及震波/邊界層相互反應情況,與NASA之研究模擬相符。
In this study, we will develop exact Riemann Solvers of MUSCL type methods to capture shock wave in a scramjet inlet. By using Navier-Stokes equation in coupled Eulerian-Lagrangian coordinate system, we can not only avoid numerical diffusion in Eulerian approach but also avoid severe grid deformation in Lagrangian approach and preserve angle between grids. Numerically time discretion and spatial discretion are using Strang-Splitting method and Godunov flux splitting method, which can increase accuracy and stability. Finally, we take geometry of a scramjet inlet designed by NASA in 1982 and simulate flow-field in inlet to compare NASA’s effects. In our results, the simulation of shock waves and shock/boundary layer interaction are in satisfactory consistency with the computed data and NASA’s simulation results.
中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖與表目錄 vi 符號說明 viii 第一章 緒論 1.1 前言 1 1.2 文獻回顧 4 1.3 內容與組織架構 7 第二章 數值模式 2.1 統御方程式 9 2.2移動網格 13 2.3 邊界條件與架構 16 2.4真實黎曼解 17 2.5解析策略 25 第三章 數值結果 3.1平板流震波之捕捉 30 3.2震波與邊界層交互反應 34 3.3非對稱斜板震波捕捉 40 3.4衝壓引擎之進氣道數值模擬 44 第四章 總結 59 參考文獻 61
[1] Jones, R. A.; and Huber, P. W.: Toward Scramjet Aircraft, Astronautics and Aeronautics, Vol. 16, No. 2, Feb. 1978, pp. 38-49. [2] Beach, H. L., Jr.: Hypersonic Propulsion. Paper No. XII Aero propulsion, NASA CP-2092, 1979. [3] Trexler, C. A.: Design and Performance at a Local Mach Number of 6 of an Inlet for an Integrated Scramjet Concept. NASA TN D-7944, 1975. [4] Anderson, G. Y.: Hypersonic Propulsion. Paper No. VI Aeronautical Propulsion, NASA ~~-381, 1975. [5] C. W. Hirt, A. A. Amsden and J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J. Comput. Phys., 14, pp. 227-253, 1974. [6] W. Pracht. Calculating Three-Dimensional Fluid Flows at All Speeds with an Eulerian-Lagrangian Computing Mesh. J. Comput. Phys., 17, pp. 132-159, 1975. [7] Hui WH, Li PY, Li ZW. A Unified Coordinate System for Solving the Two-Dimensional Euler Equations, Journal of Computational Physics, 1999, 153:596-637. [8] Hui WH, Koudriakov S. The Role of Coordinates in the Computation of Discontinuities in One-Dimensional Flow, Computational Fluid Dynamics Journal, 2000, 8: 495-510. [9] Hui WH, Koudriakov S. On contact overheating and other computational difficulties of shock-capturing methods, Computational Fluid Dynamics Journal, 2001, 10: 192-209. [10] D. H. Wagner. Equivalence of Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions; J. Differential Equations. 68, 118-136, 1987. [11] M. S. Liou. An extended Lagrangian Method. J. Comput. Phys., 118, 294-309, 1995. [12] L. G. Margolin. Introduction to “An Abritrary Lagrangian- Eulerian Computing Method for All Flow Speeds”. J. Comput. Phys., 135, 198-202,1997. [13] M. S. Hall. A Comparison of First and Second Order Rezoned and Lagrangian Godunov Solutions J. Comput. Phys., 90, 458-485, 1990. [14] Hui WH, Koudriakov S. A Unified Coordinate System for Solving the Three-Dimensional Euler Equations, Journal of Computational Physics, 172: 235-260,2001. [15] Hui WH, He Y. Hyperbolicity and Optimal Coordinates for the Three- Dimensional Supersonic Euler Equations, SIAM Journal on Applied Mathematics, 57: 893-928, 1997. [16] Loh CY, Liou MS. A New Lagrangian Method for Three-Dimensional Steady Supersonic Flows, Journal of Computational Physics, 113:224-248, 1994. [17] Hui WH, Koudriakov S. Calculation of the Shallow Water Wave Equations Using the Unified Coordinates , SIAM Journal on Scientific Computing, 23: 1615-1654, 2002. [18] Chapman D.R., Kuehn D.M., Larson H.K., Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition, NACA-TN-3869, NACA Rep. 1356, 1957. [19] Green J.E., Interactions between shock waves and turbulent boundary layers, Prog. Aerosp. Sci. 11, 235–340, 1970. [20] Holden M.S., Two-dimensional shock wave-boundary layer interactions in high speed flows. Part II, Experimental Studies on Shock Wave-Boundary Layer Interactions, AGARDograph AG-203,41–110,1975. [21] Needham D.A., Stollery J.L., Hypersonic studies of incipient separation and separated flows, AGARD CP 4 (I), 89–119, 1966. [22] Grasso F., Leone G., Délery J.M., A validation procedure for the analysis of shock wave-boundary layer interaction problems, AIAA J. 32 (9), 1820–1827, 1994. [23] Eckert E.R.G., Engineering relations for friction and heat transfer to surfaces in high velocity flow, J. Aeronaut. Sci. 23 (8) 585–587,1956. [24] N.A. Adams, K. Shariff, “A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems”. J. Comp. Phys. 127, 27–51, 1996. [25] S. Stolz, N.A. Adams and L. Kleiser, “The approximate deconvolution model for large eddy simulation of compressible flows and its application to shock-turbulent-boundary-layer interaction”. Phys. Fluids 13, 2985–3001, 2001. [26] M.E. Zuber, W. Dieudonne and J.-M. Charbonnier. “ FlowField Structure For Crossing Shockes Intersecting a Mach 6 Laminar Boundary Layer”, 18th AIAA 2000-4515.August, 2000. [27] Grasso F.,Marini M., Analysis of hypersonic shock-wave laminar boundary-layer interaction phenomena, Comput. Fluids 25 (6), 561–581, 1996. [28] Marini M., Effects of Flow and Geometry Parameters on Shock-Wave Boundary-Layer Interaction Phenomena, AIAA Paper 98-1570, 1998. [29] Ajay Kumar and S.N. Tiwari : Analysis of the Scramjet Inlet Flow Field Using Two-Dimensional Navier-Stokes Equation. NASA CR-3562 [30] MacCormack, R. W.: The Effect of Viscosity in Hypervelocity Impact Cratering. AIAA Paper No. 69-354, 1969. [31] Thompson, J. F.; Thames, F. C.; and Mastin, C. W.: Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies. NASA CR-2729, 1977. [32] W. J. Yanta, A. S. Collier, W.C. Spring III, C. F.Boyd, and J.C. McArthur, ''Experiment Measurements of the Flow in a Scramjet Inlet at Mach 4'', Journal of Propulsion an Power, Vol.6, No. 6, pp.784-790, 1990. [33] S. S. Gokhale and V. R. Jumar, ''Numerical Computations of Supersonic Inlet Flow'', International Journal for Numerical Methods in Fluids, Vol.36, pp.597-617, 1991. [34] S. D. Holland, ''Mach 10 Comutataional Study of a Three-Dimensional Scramjet Inlet Flow Field'', NASA Technical Memorandum 4602, pp.1-29, 1995. [35] R. T. Voland, A. H. Auslender, M. K. Smart, A. S. Roudakov, V. L. Semenov, and V. Kopchenov, ''CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test'', AIAA Paper 99-4848. [36] R. C. Rogers, A. T. Shih, C. -Y. Tsai, and R. O. Foelsche, ''Scramjet Tests in a Shock Tunnel at Flight Mach 7,10 and 15 Conditions'', AIAA Paper 2001-3241, pp. 1-9, 2001. [37] S. O. Macheret, M. N. Shneider, and R. B. Miles, ''Scramjet Inlet Control by Off-Body Energy Addition: A Virtual Cowl'', AIAA Paper 2003-0032,pp.1-18, 2003. [38] C. G. Rodriguez, '' CFD Analysis of the CIAM/NASA Scramjet'', AIAA Paper 2002-4128,99.1-12, 2002. [39] Delery JM. Shock wave/boundary layer interactions, in Handbook of Shock Waves, Ben-Dor G , Igra O , Elperin T (eds), Academic Press,San Diego. Vol. II, 2001, pp. 205-261. [40] Hakkinen. R.J., Breber, 1, Trilling, L. and Abarbanel. S.S.. "The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer". NASA Memo2-18-59 W, 1959. [41] Hookey. NA, “A Control Volume Finite-Element Method for Steady Two- Dimensional Viscous Compressible Flows'” , Ph.D. thesis. McGill Univ., Montreal. Canada, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔