|
[1] Jones, R. A.; and Huber, P. W.: Toward Scramjet Aircraft, Astronautics and Aeronautics, Vol. 16, No. 2, Feb. 1978, pp. 38-49. [2] Beach, H. L., Jr.: Hypersonic Propulsion. Paper No. XII Aero propulsion, NASA CP-2092, 1979. [3] Trexler, C. A.: Design and Performance at a Local Mach Number of 6 of an Inlet for an Integrated Scramjet Concept. NASA TN D-7944, 1975. [4] Anderson, G. Y.: Hypersonic Propulsion. Paper No. VI Aeronautical Propulsion, NASA ~~-381, 1975. [5] C. W. Hirt, A. A. Amsden and J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J. Comput. Phys., 14, pp. 227-253, 1974. [6] W. Pracht. Calculating Three-Dimensional Fluid Flows at All Speeds with an Eulerian-Lagrangian Computing Mesh. J. Comput. Phys., 17, pp. 132-159, 1975. [7] Hui WH, Li PY, Li ZW. A Unified Coordinate System for Solving the Two-Dimensional Euler Equations, Journal of Computational Physics, 1999, 153:596-637. [8] Hui WH, Koudriakov S. The Role of Coordinates in the Computation of Discontinuities in One-Dimensional Flow, Computational Fluid Dynamics Journal, 2000, 8: 495-510. [9] Hui WH, Koudriakov S. On contact overheating and other computational difficulties of shock-capturing methods, Computational Fluid Dynamics Journal, 2001, 10: 192-209. [10] D. H. Wagner. Equivalence of Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions; J. Differential Equations. 68, 118-136, 1987. [11] M. S. Liou. An extended Lagrangian Method. J. Comput. Phys., 118, 294-309, 1995. [12] L. G. Margolin. Introduction to “An Abritrary Lagrangian- Eulerian Computing Method for All Flow Speeds”. J. Comput. Phys., 135, 198-202,1997. [13] M. S. Hall. A Comparison of First and Second Order Rezoned and Lagrangian Godunov Solutions J. Comput. Phys., 90, 458-485, 1990. [14] Hui WH, Koudriakov S. A Unified Coordinate System for Solving the Three-Dimensional Euler Equations, Journal of Computational Physics, 172: 235-260,2001. [15] Hui WH, He Y. Hyperbolicity and Optimal Coordinates for the Three- Dimensional Supersonic Euler Equations, SIAM Journal on Applied Mathematics, 57: 893-928, 1997. [16] Loh CY, Liou MS. A New Lagrangian Method for Three-Dimensional Steady Supersonic Flows, Journal of Computational Physics, 113:224-248, 1994. [17] Hui WH, Koudriakov S. Calculation of the Shallow Water Wave Equations Using the Unified Coordinates , SIAM Journal on Scientific Computing, 23: 1615-1654, 2002. [18] Chapman D.R., Kuehn D.M., Larson H.K., Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition, NACA-TN-3869, NACA Rep. 1356, 1957. [19] Green J.E., Interactions between shock waves and turbulent boundary layers, Prog. Aerosp. Sci. 11, 235–340, 1970. [20] Holden M.S., Two-dimensional shock wave-boundary layer interactions in high speed flows. Part II, Experimental Studies on Shock Wave-Boundary Layer Interactions, AGARDograph AG-203,41–110,1975. [21] Needham D.A., Stollery J.L., Hypersonic studies of incipient separation and separated flows, AGARD CP 4 (I), 89–119, 1966. [22] Grasso F., Leone G., Délery J.M., A validation procedure for the analysis of shock wave-boundary layer interaction problems, AIAA J. 32 (9), 1820–1827, 1994. [23] Eckert E.R.G., Engineering relations for friction and heat transfer to surfaces in high velocity flow, J. Aeronaut. Sci. 23 (8) 585–587,1956. [24] N.A. Adams, K. Shariff, “A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems”. J. Comp. Phys. 127, 27–51, 1996. [25] S. Stolz, N.A. Adams and L. Kleiser, “The approximate deconvolution model for large eddy simulation of compressible flows and its application to shock-turbulent-boundary-layer interaction”. Phys. Fluids 13, 2985–3001, 2001. [26] M.E. Zuber, W. Dieudonne and J.-M. Charbonnier. “ FlowField Structure For Crossing Shockes Intersecting a Mach 6 Laminar Boundary Layer”, 18th AIAA 2000-4515.August, 2000. [27] Grasso F.,Marini M., Analysis of hypersonic shock-wave laminar boundary-layer interaction phenomena, Comput. Fluids 25 (6), 561–581, 1996. [28] Marini M., Effects of Flow and Geometry Parameters on Shock-Wave Boundary-Layer Interaction Phenomena, AIAA Paper 98-1570, 1998. [29] Ajay Kumar and S.N. Tiwari : Analysis of the Scramjet Inlet Flow Field Using Two-Dimensional Navier-Stokes Equation. NASA CR-3562 [30] MacCormack, R. W.: The Effect of Viscosity in Hypervelocity Impact Cratering. AIAA Paper No. 69-354, 1969. [31] Thompson, J. F.; Thames, F. C.; and Mastin, C. W.: Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies. NASA CR-2729, 1977. [32] W. J. Yanta, A. S. Collier, W.C. Spring III, C. F.Boyd, and J.C. McArthur, ''Experiment Measurements of the Flow in a Scramjet Inlet at Mach 4'', Journal of Propulsion an Power, Vol.6, No. 6, pp.784-790, 1990. [33] S. S. Gokhale and V. R. Jumar, ''Numerical Computations of Supersonic Inlet Flow'', International Journal for Numerical Methods in Fluids, Vol.36, pp.597-617, 1991. [34] S. D. Holland, ''Mach 10 Comutataional Study of a Three-Dimensional Scramjet Inlet Flow Field'', NASA Technical Memorandum 4602, pp.1-29, 1995. [35] R. T. Voland, A. H. Auslender, M. K. Smart, A. S. Roudakov, V. L. Semenov, and V. Kopchenov, ''CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test'', AIAA Paper 99-4848. [36] R. C. Rogers, A. T. Shih, C. -Y. Tsai, and R. O. Foelsche, ''Scramjet Tests in a Shock Tunnel at Flight Mach 7,10 and 15 Conditions'', AIAA Paper 2001-3241, pp. 1-9, 2001. [37] S. O. Macheret, M. N. Shneider, and R. B. Miles, ''Scramjet Inlet Control by Off-Body Energy Addition: A Virtual Cowl'', AIAA Paper 2003-0032,pp.1-18, 2003. [38] C. G. Rodriguez, '' CFD Analysis of the CIAM/NASA Scramjet'', AIAA Paper 2002-4128,99.1-12, 2002. [39] Delery JM. Shock wave/boundary layer interactions, in Handbook of Shock Waves, Ben-Dor G , Igra O , Elperin T (eds), Academic Press,San Diego. Vol. II, 2001, pp. 205-261. [40] Hakkinen. R.J., Breber, 1, Trilling, L. and Abarbanel. S.S.. "The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer". NASA Memo2-18-59 W, 1959. [41] Hookey. NA, “A Control Volume Finite-Element Method for Steady Two- Dimensional Viscous Compressible Flows'” , Ph.D. thesis. McGill Univ., Montreal. Canada, 1989.
|