|
[1]Z. Jiang , K. Takayana , H. Babinsky and T. Meguro , 1997, “Transient shock wave flow in tube with a sudden change in cross section”, Shock Waves , Vol. 7, pp. 151-162. [2]Z. Jiang , C. Wang , Y. Miura and K. Takayama , 2003, “Three-dimensional propagation of the transmitted shock wave in a square cross-sectional chamber”, Shock Waves , Vol. 13, pp. 103-111. [3]Z. Jiang , Y. Huang and K. Takayana , 2004, “Shocked flows induced by supersonic projectiles moving in tubes”, Computers & Fluids , Vol. 33, pp. 953-966. [4]S. M. Liang , W. T. Chung and H. Chen , 2005, “Numerical Investigation of Reflected Shock/Vortex Interaction near an Open-Ended Duct”, AIAA Journal , Vol. 43, No. 2 , pp. 349-356. [5]H. Teng , Z. Jiang , Z. Han and S. H. R. Hosseini , 2005, “Numerical investigation of toroidal shock wave focusing in a cylindrical chamber”, Shock Waves , Vol. 14, No. 4, pp. 299-305. [6]J. P. Hartnett and W. J. Minkowycz , 1997, “Effect of pulsating inlet on the turbulent flow and heat transfer past a backward-facing step”, Int. Comm. Heat Mass Transfer , Vol. 24, No. 7 , pp. 1009-1018. [7]M. Sun and K. Takayama , 2003, “Note on numerical simulation of vertical structures in shock diffraction”, Shock Waves , Vol. 13, pp. 25-32. [8]B. A/K Abu-Hijleh , 2000, “Heat transfer from a 2D backward facing step with isotropic porous floor segments”, Int. J. Heat and Mass Transfer , Vol. 43, pp. 2727-2737 . [9]T. S. Cheng and Y. L. Tsay , 2001, “Natural convection heat in an enclosure with a heated backward step”, Int. J. Heat and Mass Transfer , Vol. 44, pp. 3963-3971. [10]R. V. R. Avancha and R. H. Pletcher , 2002, “Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations”, Int. J. Heat and Fluid Flow , Vol. 23, pp. 601–614. [11]Y. L. Tasy , T. S. Chang and J. C. Cheng , 2005, “Heat transfer enhancement of backward-facing step flow in a channel by using baffle installation on the channel wall”, Acta Mechanica , Vol. 174 , pp. 63-76. [12]Y. T.Chen , J. H. Nie , B. F. Armaly and H. T. Hsieh , 2006, “Turbulent separated convection flow adjacent to backward-facing step─effects of step height”, Int. J. Heat and Mass Transfer , Vol. 49, pp. 3670-3680. [13]B. Engquist, Osher and S. R. Chakravarthy , 1987,“Uniformly High Order Accurate Essentially Non-oscillatory Schemes , III”, Journal of Computational Physics, Vol 71, pp. 231-303. [14]X. D. Liu , S. Osher and T. Chen , 1994, “Weighted Essentially Non-ocillatory Scheme”, Journal of Computational Physics, Vol. 115, pp.200-212. [15]G. S. Jiang and C. W. Shu October , 1995, “Efficient Implementation of Weighted ENO Schemes“, ICASE report No. 95-73. [16]S. Wakashima , T. S. Saitoh , 2004, “Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method“, Int. J. Heat and Mass Transfer , Vol. 47, pp. 853-864. [17]T. J. Poinsot and S. K. Lele , 1992, “Boundary Conditions for Direct Simulations of Compressible Viscous Flows”, J. Computational Physics , Vol. 101, pp. 104-129. [18]C. W. Shu , T. A. Zang , G. Erlebacher , D. Whitaker and S. Osher , 1992 ,“High-order ENO sheme applied to two-and three-dimensional compressible flow”, Applied Numerical Mathematics , Vol. 9 , pp. 45-71. [19]S. Xu , T. Aslam and D S. Stewart , 1997, “High resolution numberical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries”, Combust. Theory Modelling 1 , pp. 113-142. [20]W. Bao and S. Jin , 2003 ,“High-order I-stable centered difference schemes for viscous compressible flows“ , Journal of ComPutational Mathematics , Vol. 21, No.1, pp. 101-112.
|