(3.235.108.188) 您好!臺灣時間:2021/03/03 20:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:甘貴州
研究生(外文):Kan Kuei-Chou
論文名稱:運用熱不平衡模型探討多孔性介質中熱對流穩定性
論文名稱(外文):Stability of thermal convection in porous media using a thermal non-equilibrium model
指導教授:許隆結
指導教授(外文):Sheu Long-Jye
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:穩定性多孔介質熱不平衡模型
外文關鍵詞:stabilityporous mediumthermal non-equilibrium model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分析一充滿流體的多孔介質中對流熱傳穩定性。考慮多孔介質固體與流體間的熱傳影響,因此使用熱不平衡模型來描述固體與液體的溫度分布。應用Galerkin方法至多孔介質中的流場與溫度分布,可推得一組五維非線性動力方程式來描述流線與溫度分布的振幅隨時間之運動。研究中詳細分析並討論修正後多孔性傳導係數、固液間熱傳係數H與擴散係數比等對於多孔介質中之臨界熱對流之影響。根據穩定性分析顯示,介面熱傳係數 H傾向於延緩熱對流的發生。然而,在熱對流中的臨界Darcy-Rayleigh常數卻隨著修正後多孔性傳導係數而降低。雖然臨界對流的發生與擴散係數比是無關的,本研究中發現擴散係數比對穩態對流的穩定性之影響。
Stability of thermal convection in a fluid-saturated porous medium was analyzed by using a thermal non-equilibrium model to take account of the interphase heat transfer between the fluid and the solid. The study is based on the five dimensional nonlinear dynamical system deduced by applying the truncated Galerkin expansion to the momentum and heat transfer equations. The effects of the porosity-modified conductivity ratio λ , interphase heat transfer H, and the ratio of diffusivity α , on the onset of convection and the first transition of the convection in a porous medium were analyzed and discussed. The stability analysis revealed that the interphase heat transfer H tends to retard the onset of thermal convection. However, the critical Darcy-Rayleigh number of onset of convection decreases with the porosity-modified conductivity ratio, λ . Even though the onset of convection is independent of α , it is shown the first transition of convection is a strong function of α .
摘 要 英文摘要 目 錄 圖 目 錄 符號說明 第一章 簡介 1.1 研究背景 1.2 文獻回顧 1.3 研究目的與方法 第二章 物理與數學模式 第三章 系統之特性與穩定性分析 第四章 數值結果 4.1 S1之穩定性 (臨界對流) 4.2 S2,3之穩定性(穩態對流之初次轉變) 第五章 結 論 參考文獻
1.Horton C. W. and Roger F. T., “Convection Currents in a Porous Medium,” Journal of Applied Physics, Vol. 16, p. 3670, 1945. 2.Lapwood E. R., “Convection of A Fluid in a Porous Medium,” Proceeding of Cambridge Phil Society, Vol. 44, pp. 508-521, 1948. 3.Y. Katto, T. Masuoka, “Criterion for onset of convection in a saturated porous medium,” Int. J. Heat Transfer, Vol. 10, pp. 297-309. 4.Masuoka T., Rudraiah N. and Siddheshwar P. G., “Nonlinear convection in porous medium: a review,” J. Porous Medium, Vol. 6, pp. 1-32, 2003. 5.Vadasz P., “Local and Global Solutions for Transitions to Chaos and Hysteresis in A Porous Layer Heated from Below,” Transport in Porous Medium, Vol. 37, pp. 213-245, 1999. 6.Vadasz P. and Olek S., “Weak Turbulence and Chaos for Low Prandtl Number Gravity Driven Convection in Porous Media,” Transport in Porous Medium, Vol. 37, pp. 69-91, 1999. 7.Vadasz P. and Olek S., “Route to Chaos for Moderate Prandtl Number Convection in A Porous Layer Heated form Below,” Transport in Porous Medium, Vol. 41, pp. 211-239, 2000. 8.Vadasz P., “The Effect of Thermal Expansion on Porous Media Convection. Part 2. Thermal Convection Solution,” Transport in Porous Media, Vol. 44, pp. 445-463, 2001. 9.Vadasz J. J., Roy-Ailens J. E. A. and Vadasz P., “Sudden or Smooth Transition in Porous Media Natural Convection,” International Journal of Heat Mass Transfer, Vol. 48, pp. 1096-1106, 2005. 10.Nield D.A. and Bejan A., Convection in Porous Medium, ed. Springer-Verlag, New York, 1999. 11.Pop I. and Ingham D. B., Convection Heat Transfer: Mathematical and Computation Modeling of Visxous Fluids and Porous Media, Pergamon, Oxford, 2001. 12.Rees D. A. S. and Pop I., “Free Convection Stagnation Point Flow in a Porous Medium Using Thermal Non-equilibrium Model,” International Communications in Heat and Mass Transfer, Vol. 26, pp. 945-954, 1999. 13.Rees D. A. S. and Pop I., “Vertical Free Convective Boundary Layer Flow in a Porous Medium Using a Thermal Non-Equilibrium Model,” Journal of Porous Media, Vol. 3, pp. 31-44, 2000. 14.Rees D. A. S. and Pop I., “Vertical Free Convective Boundary Layer Flow in A Porous Medium Using A Thermal Non-equilibrium Model: Elliptic Effects,” Journal of Applied Mathematical Physics, Vol. 53, pp. 1-12, 2002. 15.Kuznetsov A. V., “Thermal Non-equilibrium Forced Convection in Porous Media,” in: Ingham D. B. and Pop I., editors, Transport Phenomena in Porous Media, Oxford, UK: Pergamon, pp. 103-130, 1998. 16.Banu N. and Rees D. A. S., “Onset of Darcy-Benard Convection Using a Thermal Non-equilibrium Model,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2221-2228, 2002. 17.Sheu L. J., “An Autonomous System for Chaotic Convection in a Porous Medium Using a Thermal Non-Equilibrium Model,” Chaos Solitons & Fractals, Vol. 30, pp. 672-689, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔