跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃書瑋
論文名稱:以SF6/O2/Ar感應耦合電漿蝕刻碳化矽材料
論文名稱(外文):SF6/O2/Ar inductively coupled plasma etching of SiC
指導教授:馬廣仁簡錫新簡錫新引用關係
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:微型模具電漿蝕刻SF6O2反應氣體
外文關鍵詞:Micro-moldPlasma EtchingSF6O2Reaction Gas
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1306
  • 評分評分:
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技商品輕量化與小型化的發產趨勢,對於量產微型零件而言,成本低廉與高精密度的微型模具製造技術是非常重要的。對於高工作溫度的微型模具而言,最重要的條件包括高溫強度、韌性、低熱膨脹係數及抗沾黏特性等,碳化矽(SiC)為製作微型模具之理想材料。SiC材料很難以傳統加工方式製作出奈微米圖案。本研究的主要目地是利用SF6、O2、Ar三種氣體混合,並且在SiC上蝕刻出微米結構,探討氣體混合比例與製程時間對蝕刻產生之表面形貌及表面粗糙度之影響。結果顯示,Ar的加入可有效使F、O自由基與SiC之間化學反應效果加強,也有利於蝕刻速度。在電漿的作用下F離子與真空腔體壁上蝕出的Al,生成一層Al-F化合物薄膜沉積在蝕刻凹坑內,此薄膜明顯主導SiC蝕刻機制,以SF6、O2混合比例4:1進行蝕刻可達到表面粗糙度0.37 nm。Ar的加入除了可增強蝕刻速率外,表面粗糙度也降低至0.27 nm。當SF6/O2/Ar分別以10.5/2.6/6.9 sccm混合,經過90分鐘的電漿蝕刻可得侵蝕深度為399.24 nm。
Light weight and small size become the trend of technology development for many commercialized products. It is essential to develop micro-mold fabrication technologies for the mass production of micro-components with high precision and lower cost. The most important requirements for high temperature micro-molds include high temperature strength, toughness, low thermal expansion coefficient and anti-stick properties. SiC is one of the candidate materials for the fabrication of micro-molds. It is difficult to produce micro/nano-pattern on SiC material by traditional machining process. The aim of this research is to fabricate micro-pattern on SiC material by plasma etching process using SF6, O2 and Ar as the reactive gas. The effects of gas flow ratio and processing duration on the surface morphology and roughness of etched pattern are investigated. The results show that the addition of Ar effectively enhances the chemical reaction of F、O radical with SiC material, which favors etching rate. Al-F based film was found to be formed on the etched surface due to the F ion interaction with Al ion coming from chamber wall, which dominates the etching mechanisms. Surface roughness of Ra :0.37 nm can be obtained after 30 minutes plasma treatment with the SF6 /O2 ratio of 4:1. Introducing Ar into reaction gas enhances the etching rate and further improves the surface roughness up Ra 0.27 nm. The etching depth of 399.24 nm can be achieved after 90 minutes plasma etching treatment with the SF6/O2/Ar gas flow rate of 10.5/2.6/6.9 sccm.
目錄中文摘要 --------------------------------------------------------------------------I Abstract ----------------------------------------------------------------------------II 致謝 ------------------------------------------------------------------------------III 目錄 ------------------------------------------------------------------------------IV 表目錄 --------------------------------------------------------------------------VII 圖目錄 -------------------------------------------------------------------------VIII 第一章:前言 ---------------------------------------------------------------------1 第二章:文獻回顧 ---------------------------------------------------------------3 2-1:微模具之應用 -----------------------------------------------------------3 2-2:碳化矽(SiC)材料特性 --------------------------------------------------7 2-2-1:碳化矽(SiC)材料發展史 -----------------------------------------7 2-2-2:碳化矽(SiC)材料之特性 ----------------------------------------10 2-2-3:碳化矽(SiC)材料之應用 ----------------------------------------12 2-3:電漿之原理及應用 ----------------------------------------------------13 2-3-1:電漿之生成與分類 ----------------------------------------------14 2-3-2:電漿之基本特性 -------------------------------------------------18 2-3-3:電漿之應用 -------------------------------------------------------19 2-4:蝕刻特性之比較 -------------------------------------------------------23 2-5:碳化矽(SiC)材料蝕刻特性 ------------------------------------------26 2-5-1:濕式蝕刻 ----------------------------------------------------------26 2-5-2:乾式蝕刻 ----------------------------------------------------------27 第三章:實驗方法 --------------------------------------------------------------33 3-1:實驗流程 ----------------------------------------------------------------34 3-2:實驗設備 ----------------------------------------------------------------35 3-2-1:電漿系統(Plasma System) ------------------------35 3-2-2:流量控制系統 ----------------------------------------------------38 3-3:試片前處理 -------------------------------------------------------------39 3-4:檢測儀器設備 ----------------------------------------------------------42 3-5:實驗步驟 ----------------------------------------------------------------44 第四章:結果與討論 -----------------------------------------------------------46 4-1:不同氣體比例對SiC材料蝕刻之影響 ----------------------------48 4-1-1:SF6與O2混合比例對SiC蝕刻表面形貌之影響 -----------48 4-1-2:SF6與O2混合比例對SiC蝕刻深度與表面粗糙度之影響 -----------------------------55 4-2:添加氬(Ar)對SiC之影響 --------------------------------------------61 4-2-1:添加氬(Ar)對SiC蝕刻產生表面形貌之影響 ---------------61 4-2-2:添加Ar對SiC電漿蝕刻生成物之影響 ----------------------71 4-2-3:添加氬(Ar)對SiC蝕刻產生深度與表面粗糙度之影響 ---76 4-2-4 :製程時間對SiC蝕刻表面形貌之影響 ---------------------83 4-2-5:製程時間對SiC蝕刻深度及表面粗糙度之影響 -----------88 第五章:結論 ------------------------------------------------------------------92 第六章:未來展望 --------------------------------------------------------------94 第七章:參考文獻 --------------------------------------------------------------95
1. 趙崇禮、馬廣仁、林宏彝,“微模具製程技術發展現況”,機械工業雜誌,第279期,pp.43~52,6月,2006。 2. http://elearning.stut.edu.tw/m_facture/ch7.htm 3. J. B. Blum,“ Aluminum Nitride Substrates for Hybrid Microelectronic Application, ” IEEE, Vol. 13, No. 2, June, 1990. 4. Y. Kulokawa, K. Utsumi, H. Takamizaura, I. Kamate and S. Noguchi, “PVD Aluminium Nitride as Heat-Spreader in IC Technology,” IEEE, Vol. Chmt-8, No. 2, P. 247-252.,1985. 5. 宋增滄,“以迴旋濺鍍法成長氮化鋁薄膜之機制探討”,中原大學電子工程學系碩士學位論文,pp.4,6月,2003。 6. http://elearning.stut.edu.tw/caster/3.1.3-2.htm. 7. 謝浚豪、劉丙寅、范正宏,“奈米薄膜成長技術簡介”,機械工業雜誌,第245期,pp.129-137,8月,2003。 8. J. J. Berzelius, “Characterization of Electrical Properties of 4H-SiC by Imaging Techniques,” Ann. Phys., Lpz., 1, 169, (1824). 9. E. G. Achseon,“Production of Artificial Crystalline Carbonaceous Materials,”US Patent 492,767 (28.02.1893). 10. http://en.wikipedia.org/wiki/Silicon_carbide. 11. G. Brezeanu, “A Short History. An Analytical Aproach for SiC Power Device Design”, in Proc. of the 28nd International Semiconductor Conference, 2-4 Oct., 2005, Sinaia, Romania, pp.345-348. 12. http://www.crystalradio.net/detectors/fixed/index.shtml. 13. H. J. Round, “SiC Metal Semiconductor Field Effect Transistors,” Electrical World, 19, 309, (1907). 14. http://www.ecn.purdue.edu/WBG/Introduction/exmatec.html. 15. H. Matsunami, S. Nishino and H. Ono, “Kinetic Study of 3C-SiC Growth on Si by Pyrolyzing Tetramethysilane in Low Pressure Radio Frequency-Induction Heated Chemical Vapor Deposition Reactor,” IEEE Trans, Electron, Devices, ED-28, 1235, (1981). 16. http://www.tami.org.tw/tech/doc/TECH13.doc. 17. http://www.china-power.net/psta/04-luwen/dldz-26.htm. 18. W. F. Knippenberg, “Philips Research Reports,” Vol. 18, No. 3, pp.161-274, (1963). 19. W. F. Knippenberg, “Natural α-silicon Carbide,” Philips Research Reports, 18, No. 3, 161-274, (1963). 20. 董捷、胡小波、徐現剛、王繼揚、韓榮江、李現祥,“高分辨X射線衍射法研究碳化矽單晶片中的多型結構”,人工晶體學報,第33卷,第六期,pp.920,12月,2004。 21. J. A. Powell, D. J. Larkin, L. G. Matus, W. J. Choyke, J. L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang and P. Pirouz, “Growth of Improved Quality 3C-SiC Films on 6H-SiC Substrates,” Appl. Phys. Lett., 56 (14), 1353, (1990). 22. J. A. Powell, D. J. Larkin, L. G. Matus, W. J. Choyke, J. L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang and P. Pirouz, “Calculated Elastic Constants and Deformation Potentials of Cubic SiC,” Appl. Phys. Lett., 56 (14), 1353, (1990). 23. http://www.tami.org.tw/tech/doc/TECH13.doc. 24. http://www.huacera.com/product.htm. 25. http://www.dynacer.com/index.htm. 26. Kittel, C., Introduction to Solid State Physics. 1996. Ch. 10, 7th ed.(New York. Wiley). 27. F., C.a.F., Introduction to Plasma Physics. 1974 (New York, Plenum Press) 28. 董家齊、陳寬任,“奇妙的物質第四態—電漿”,科學發展,354期,2002。 29. 韓坤佑,“新式微波電漿反應器之設計及其應用於揮發性有機務處理效率之研究”,國立中興大學化學工程研究所碩士論文,6月, 2002。 30. 何主亮,“電漿基礎實驗”,材料進階實驗(一),1996。 31. D. S. Rickerby and A. Matthews, “Advanced Surface Coatings: a Handbook of Surface Engineering,” Blackie & Son Ltd., London, 1991. 32. 趙文軒,“電漿表面處理技術研究”,工業技術研究院化學工業研究所高分子技術組高分子物理及分析研究室,2000。 33. Ih-Houng Loh and Sc.D., “Plasma Surface Modification in Biomedical Applications,” AST Technical Journal, 1993. 34. J. P. Chang, “Principles of Plasma Processing,” Lecture notes, MIT, 1996. 35. http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-152JFall2003/ACFC59BA-7FCA-48FB-9BE9-3B12F2735E39/0/lecture16a.pdf. 36. 黃柏仁,“微電子技術導論”,國立雲林科技大學電子工程學系, 第八章, pp.8. 37. http://www.moneydj.com/z/glossary/glexp_2608.asp.htm 38. 工研院IEK機電運輸組,“IC製造前段設備專題研究,晶圓清洗設備與蝕刻設備市場與技術分析”,工研院機械所,1999。 39. http://elearning.stut.edu.tw/m_facture/ch9.htm. 40. D. W. Kim, H. Y. Lee, B. J. Park, H. S. Kim, Y. J. Sung, S. H. Chae, Y. W. Ko, G. Y. Yeoma,“High Rate Etching of 6H–SiC in SF6-based Magnetically-enhanced Inductively Coupled Plasmas,” Thin Solid Films, vol. 447–448, pp. 100–104, 2004. 41. R. Yakimova, A. -L. Hylen, M. Tuominen, M. Syvajarvi and E. Janzen, “Preferential Etching of SiC Crystals,” Diamond and Related Materials, Elsevier, Vol. 6, pp.1456-1458, 1997. 42. W. S. Moo, J. G. Song, “Study on the Photoelectro-Chemical Etching Process of Semiconducting,” Materials Science ﹠Engineering, B95, pp.191-194, 2002. 43. J. J. Wong, E. S. Lambers, S. J. Pearton, M. Ostling, C. M. Zetterling, J. M. Grow, F. Ren and R. J. Shul, “ICP Etching of SiC,” Solid-State Electronics, Pergamon, Vol. 42, No. 12, pp. 2283-2288, 1998. 44. S. Tanaka, K. Rajanna, T. Abe, M. Esashi, “Deep Reactive Ion Etching of Silicon Carbide,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 19(6), pp.2173 -2176, 2001. 45. L. Jiang, N. O. V. Plank, R. Cheung, R. Brown, A. Mount, “Surface Characterization of Inductively Coupled Plasma Etched SiC in SF6/O2”Microelectronic Engineering, Elsevier, 67-68, pp.369–375, 2003. 46. L. Jiang, R. Cheung, “Impact of Ar Addition to Inductively Coupled Plasma Etching of SiC in SF6/O2,” Microelectronic Engineering, Elsevier, 73–74, pp.306-311, 2004. 47. J. W. Coburn, E. Kay, “Some Chemical Aspects of the Fluorocarbon Plasma Etching of Silicon and Its Compounds,” IBM, J. Res. Develop, Vol. 23, No. 1, January, 1979. 48. H. Y. Lee, D. W. Kim, Y. J. Sung, G. Y. Yeom, “Fabrication of SiC Micro-Lens by Plasma Etching,” Science Direct, Elsevier, Vol 475, pp.318-322, 2005. 49. M. Lazar, H. Vang, P. Brosselard, C. Raynaud, P. Cremillieu, J.-L. Leclercq, A. Descamps, S. Scharnholz, D. Planson, “Deep SiC Etching with RIE,” Superlattices and Microstructures, Elsevier, Vol. 40, p.p.388-392, 2006. 50. K. P. Giapis, G. S. Hwang, “Plasma Interactions With Aspect Ratio Patterned Surface:Ion transport, Scattering, and the Role of Charging,”Thin Solid Films, Elsevier, Vol. 374, p.p.175-180, 2000. 51. 殷壽志,“製作與量測以BCB/Ta2O5/SiO2 為結構之抗共振反射波導”,國立中山大學機械與機電工程學系碩士論文,pp.18,6月,2002。 52. 彭軍、楊銀堂,“碳化矽寬帶隙半導體技術”,科學出版社,pp.41,5月,2000。 53. http://www.chemicalland21.com/industrialchem/inorganic/ALUMINUM%20FLUORIDE.htm. 54. 郭建煌, “電漿蝕刻SiC材料與微型模具製作之研究”,中華大學機械與航太工程研究所碩士論文, p.p. 51, 8月, 2006. 55. J. H. Xia, Rusli , S. F. Choy, R. Gopalakrishan, C. C. Tin, J. Ahn, “The Role of Oxygen in Electron Cycletron Resonance Etching of Silicon Carbide,” Microelectronic Engineering, Elsevier, Vol.83, p.p.9-11, 2006. 56. M. Imaizumi, Y. Tarui, H. Sugimoto, J. Tanimura, T. Takami and T. Ozeki, “Reactive Ion Etching in CF4/O2 Gas Mixtures for Fabricating SiC Devices,” Materials Science Forum, Vols.338-342, pp. 1057-1060, 2000. 57. P. Chabert, G. Cunge, J. -P. Booth, J. Perrin, “Reactive Ion Etching of Silicon Carbide in SF6 Gas:Detection of CF, CF2, and SiF2 Etch Products,” Applied Physics Letters, Vol.79, p.p.916-918, 2001. 58. Lihui Cao, Binghui Li, Jian H. Zhao, “Etching of SiC Using Inductively Coupled Plasma,” J. Electrochem. Soc., Volume 145, Issue 10, pp. 3609-3612,1998. 59. http://www.webelements.com/webelements/compounds/text/Al/Al2O3-1344281.html.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王安祈:〈張岱的戲劇生活〉,《歷史月刊》第13期,1989年2月
2. 周志文:〈張岱與西湖夢尋〉,《淡江學報》第27期,1989年2月
3. 何冠彪:〈張岱別名、字號與籍貫新考〉,《中國書目季刊》,1989年6月
4. 孫尚志:〈略述明末紹興明士張岱〉,《浙江月刊》,1992年12月
5. 曹淑娟:〈痴人說夢,寧恆在夢—論張岱的尋夢情結〉,《鵝湖》1993年9月
6. 簡瑞銓:《陽明學說對四書遇的影響》,《明道通識論叢》第2期,2007年3月
7. 程元敏:〈大學改本述評〉,《孔孟學報》23期,1972年
8. 劉貴傑:〈契嵩思想研究──佛教思想與儒家學說之交涉〉,《中華佛學學報》第2期,1988年10月
9. 金耀基:〈儒家倫理•社會學與政治秩序〉,《當代》第41期,1989年9月
10. 王家儉:〈晚明的實學思潮〉《漢學研究》第7卷,第2期,1989年12月衷爾鉅:〈論明代的理學和心學〉,《中州學刊》第1期,1990年
11. 陳學文:〈明代中葉以來棄農棄儒從商風氣和重商思潮的出現〉,《九州學刊》第3卷第4期,1990年
12. 劉述先:〈黃宗羲對孟子的理解〉,《鵝湖》25卷7期,1990年
13. 周積明:〈四庫全書總目的經學批評〉,《孔孟學報》71期,1996年
14. 何澤恆:〈大學格物別解〉,《漢學研究》第18卷2期,2000年10月
15. 毛文芳:〈晚明狂禪探論〉,《漢學研究》第19 卷第2 期,2001 年12 月