(3.235.108.188) 您好!臺灣時間:2021/02/25 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李振忠
研究生(外文):LI CHENG CHUNG
論文名稱:等效次模型對覆晶球柵陣列構裝體可靠度分析之探討
論文名稱(外文):The study of FCBGA package reliability with equivalent and sub-modeling methodology
指導教授:陳精一陳精一引用關係
指導教授(外文):CHEN CHING I
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:有限元素法次模型分析錫球可靠度覆晶球柵陣列構裝體疲勞壽命
外文關鍵詞:FEMSubmodeling techniqueSolder reliabilityFCBGA packageFatigue life
相關次數:
  • 被引用被引用:1
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用有限元素等效全域模型配合次模型技巧(sub modeling technique),針對覆晶球柵陣列構裝體(FCBGA),進行銲錫接點可靠度之評估。等效全域模型中將銲錫凸塊與填膠及球柵陣列視為一層結構,利用體積比求取其材料特性,以避免過多的焊錫接點造成有限元素模型建立的困難度及降低分析時間。經等效全域模型分析,利用其應變分佈趨勢可推測銲錫失效之關鍵位置,於焊錫凸塊與錫球次模型分析取得銲錫接點的力學反應,進而進行壽限評估。 對於銲錫力學行為,考慮其雙線性硬化塑性應變及Hyperbolic Sine Model 潛變效應探討銲錫在0℃至100℃熱循環測試(TCT)三週次負載下應力與應變反應,將其應變結果代入Modified Coffin-Manson疲勞壽命預測公式求得銲錫之疲勞壽命。 二組FCBGA構裝結構,藉由業界實驗數據進行比對,發現錫球提供良好壽限可靠度,焊錫凸塊提供較低的壽限預測。由於基板材料特性的不確定性,經適度調整基板中built-up與核心材料的楊氏係數,可獲得與實驗數據相吻合的壽限分析。對於探討覆晶球柵陣列構裝體疲勞壽限預估而言,本研究之技巧為快速既有效之方法。
Due to the high speed and high I/O count for semiconductor package requirements, thousands of soldered interconnection are indispensable, and this situation renders the traditional finite element method (FEM) analysis a formidable challenge. This thesis presents an FEM submodeling technique with simplified soldered interconnections for investigating the reliability of the semiconductor package. For the submodeling technique, a global model with two equivalent layers was created to represent the soldered bump encapsulating the underfill and soldered ball. Once the global model is solved, the critical small-scale region, i.e., the soldered interconnection, which is called the submodel, is reconsidered as another finite element model. The submodel is then used to solve these specified displacement boundary conditions, which are interpolated from the global model, together with external loads. Two particular flip chip ball grid array (FCBGA) packages companied with experiment results were considered to illustrate the analytical procedures. All solder used was eutectic (63Sn-37Pb) material, and nonlinear behavior using a bilinear elastic-plastic with the hyperbolic Sine creep equation was considered during three thermal cyclic loadings which ranged from 0 to 100 ºC. The predicted lifespan was used in the modified Coffin-Manson’s law. According to the FEM results, the predicted life of the soldered balls were agreed with experiment results well. However the soldered joints life provided more conservative than that of experiment. Due to uncertainty material property of substrate, it is suggested that modified higher young’s modulus of the substrate is able to reach the desired life prediction for soldered joints. One concluded that the methodology in this thesis provides an efficient FEM for evaluating FCBGA package life reliability.
中文摘要………………………………………………………….…….I英文摘要……………………………………………………………….II誌謝……………………………………………………………………III章節目錄……………………………………………………………… IV 圖目錄………………………………………………………………...VI 表目錄……………………………………………………………….….X 符號說明………………………………………………………………XII 第一章 緒論…………………………………………………………… 1 1-1 前言……………………………………………………………1 1-2 研究動機………………………………………………………2 1-3 研究方法………………………………………………………4 1-4 章節概要………………………………………………………7 第二章 文獻回顧……………………………………………………… 8 第三章 有限元素模型………………………………………………..12 3-1 全域模型…………………………………………………….15 3-2 次模型……………………………………………………….17 3-3 邊界條件與負載設定……………………………………….22 3-4塑性與潛變分析模型…………………………………………24 3-5 疲勞壽命預測……………………………………………….25 3-6 實驗對比…………………………………………………….27 第四章 結果討論……………………………………………………..28 4-1 完整模型與等效模型比對………………………………….29 4-2 第一組構裝體分析探討…………………………………….42 4-3 第二組構裝體分析探討…………………………………….66 第五章 結論…………………………………………………………..87 參考文獻……………………………………………………………… 89
[1] V. Sarihan, “Energy Based Methodology for Damage and Life Prediction of Solder joints under Thermal Cycling,” IEEE 43rd Electronic Components and Technology Conference, pp. 32-38, 1993. [2] J. H. Lau, “Effects of Built-Up Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP),” Int’l Symp on Electronic Materials and Packaging, pp. 115-126, 2000. [3] B. Z. Hong and L. S. Su, “On Thermal Stresses and Reliability of a PBGA Chip Scale Package,” IEEE 48th Electronic Components and Technology Conference, pp.503-510, 1998. [4] B. A. Zahn, “Impact of Ball Via Configurations on Solder Joint Reliability in Tape-Based, Chip-Scale Packages,” IEEE 52nd Electronic Components and Technology Conference, pp.1475-1483, 2002. [5] B. Z. Hong, “Finite Element Modeling of Thermal Fatigue and Damage of Solder joint in a Ceramic Ball Grid Array Package,” Journal of Electronic Materials, Vol. 26, No. 7, pp. 814-820, 1997. [6] B. Vandevelde, M. Gonzalez, E. Beyne, G. Q. Zhang and J. Caers, “Optimal Choice of FEM Damage Volumes for Estimation of the Solder Joint Reliability for Electronic Package Assemblies,” IEEE 53rd Electronic Components and Technology Conference, pp. 589-596, 2003. [7] I. Guven, V. Kradinov, E. Madenci and J. L. Tor, “Solder Joint Life Prediction Model Based on the Strain Energy Density Criterion”, Electronic Components and Technology Conference, pp. 214-220, 2003. [8] 賴俊諺,「有限元素次結構覆晶球柵陣列構裝體錫球潛變行為分析」,碩士論文,中華大學機械與航太工程研究所,2006。 [9] ANSYS users manual 5.1, 1994. [10] J. H Lau, Y.-H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997. [11] M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H. Funakura and E. Hosomi, “CSP Solder Ball Reliability,” IEEE Electronics Manufacturing Technology Symposium, pp. 447-451, 1997. [12] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connections,” IEEE 48th Electronics Packaging Technology Conference, pp. 269-273, 1998. [13] L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, ”Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions Advanced Packaging, Vol. 23, pp. 415-420, 2000. [14] S. Baba, Q. Wu, E. Hayashi and M. Watanabe, “ Flip-Chip BGA Applied High-Density Organic Substrate,” IEEE 49th Electronic Components and Technology Conference, pp. 243-249, 1999. [15] L. Chen, Q. Zhang, G. Wang, X. Xie and Z. Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behavior of a Flip Chip Package,” IEEE Transaction Advanced Packaging, Vol. 24, pp. 17-24, 2001. [16] Z. Liji, W. Li, X. Xiaoming, and W. Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,” IEEE Transactions Electronics Packaging Manufacturing, Vol. 25, pp. 284-288, 2002. [17] B. Joiner and T. Montes, “ Thermal Performance of Flip Chip Ball Grid Array Packages,” IEEE Semiconductor Thermal Measurement and Management, pp. 50-56, 2002. [18] B. Cheng, L. Wang, Q. Zhang, X. Gao, X. Xie and W. Kempe, “Reliability and New Failure Modes of Encapsulated Flip Chip on Board Under Thermal Shock Testing,” ICEPT Electronic Packaging Technology Proceedings, pp. 416-421, 2003. [19] Tong Hong Wang, Yi-Shao Lai, Jenq-Dah Wu, “Effect of Underfill Thermomechanical Properties on Thermal Cycling Fatigue Reliability of Flip-Chip Ball Grid Array,” Journal of Electronic Packaging, Vol. 126, pp. 560-564, 2004. [20] Rainer Dudek, Margareta Nylen, Andreas Schubert, Bemd Michel, Herbert Reichl, “An Efficient Approach to Predict Solder Fatigue Life and its Application to SM- and Area Array Components,” IEEE 47th Electronic Components and Technology Conference, 1997. [21] J. H. L, Pang and T.-I. Tan, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature Cycling Loading,” IEEE 48th Electronic Components and Technology Conference, pp. 878-883, 1998. [22] Z. Qian, M. Lu, W. Ren and S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behavior of Solder and Underfill,” IEEE 49th Electronic Components and Technology Conference, pp. 141-148, 1999. [23] J. H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” Journal of Electronic Packaging, Vol. 29, pp. 997-1002, 2001. [24] J. H. L. Pang, D. Y. R Chong and T. H. Low, “Thermal Cycling Analysis of Flip Chip Solder Joint Reliability,” IEEE Transactions Components and Packaging Technology, Vol. 24, Issue 4, pp. 705-712, 2001. [25] S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel, “Understanding the Effect of Dwell Time on Fatigue Life of Packges Using Thermal Shock and Intrinsic Material Behavior,” IEEE 53rd Electronic Components and Technology Conference, pp.898-904, 2003. [26] S. Moreau, T. Lequeu and R. Jerisian, “Comparative Study of Thermal Cycling and Thermal Shocks Tests on Electronic Components Reliability,” Microelectronics Reliability, Vol. 44, pp. 1343-1347, 2004. [27] R. M. Jones, Mechanics of Composite Materials, McGraw-Hill, 1975. [28] S. M. Heinrich, M. Schaefer, S. A. Schroeder and P. S. Lee, “Prediction of Solder Joint Geometries in Array-Type Interconnects”, Transaction of ASME Journal of Electronic Packaging, Vol. 118, pp. 118-121, 1996. [29] K. Darbha, J. H. Okura, S. Shetty and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects : Part 1-Without Underfill”, Transaction of ASME Journal of Electronic Packaging, Vol. 121, pp. 231-236, 1999. [30] L. F. Coffin, Jr., “Fatigue at High Temperature,” Fatigue and Elevated Temperatures, ASTM STP 520, pp. 5-34, 1973. [31] S. S. Manson, “Thermal Stress and Low Cycle Fatigue,” New York: McGraw-Hill, 1996. [32] H. D. Solomon, “Fatigue of 60/40 Solder”, IEEE Transactions on Components, Hybrid, and Manufacturing Technology, Vol. 9, No. 4, pp. 423-432. , 1986 [33] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joint During Power Cycling,” IEEE Trans. Comp. Hybrids, Manufact. Technol., Vol. CHMT-6, pp. 52-57, 1983. [34] B. Z. Hong and L. G. Burrell, “Nonlinear Finite Element Simulation of Thermo-viscoplastic Deformation of C4 Solder joints in High Density Packaging Under Thermal Cycling,” Intersociety Conference on Thermal Phenomena, pp. 117-125, 1994. [35] Reliability test report, Temperature Cyclic Test of HFCBGA 31×31 900L, Stress-Reliability Lab., Advanced Semiconductor Engineering, Inc. [36] TSMC internal report, Package Reliability Group, November, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔