(3.238.173.209) 您好!臺灣時間:2021/05/15 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧作植
研究生(外文):Tzuo-Jr Lu
論文名稱:網格環境之生產模擬系統
論文名稱(外文):ESPOG:An Efficient Simulated Production System on Grid Environment
指導教授:林金鋒林金鋒引用關係
指導教授(外文):Chin-Feng Lin
學位類別:碩士
校院名稱:長榮大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:37
中文關鍵詞:生產模擬系統網格負載平衡
外文關鍵詞:simulated production systemgridload balancing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多廠商在投入大量資金至生產線時,可能會發生計畫不周的情形。因此,生產模擬系統在決策時便扮演重要的輔助角色。在本論文中,我們設計一個在網格環境之生產模擬系統,此系統模擬一般TFT-LCD單一生產線的製程情況,包含三個部份,分別為製程傳輸帶模擬、機台模擬以及不良品模擬。與一般的模擬系統不同的是,我們以web browser以及三層式架構來建置一個跨平台,且具互動式的生產模擬系統。此外,本系統可紀錄每一物料在生產線的情形。為了增進系統效能,我們利用網格計算來改進系統負載。實驗結果顯示,本系統可讓使用者了解每一物料在生產線的情形,同時也有不錯的系統效能。
Lots of factory owners may put large amount of funds into the production without well-designed plans. Therefore, the production simulation system plays a significant assistance role in decision-making. In this thesis, we have designed an efficient simulated production system on grid environments (ESPOG). It is a single production line simulation system. The system simulates three parts of the TFT-LCD process: the process of conveyer belt, the machinery equipment, and the defective goods. Rather than other general simulation system, we use web browser and 3-tier architecture to build up a Cross-Platform and an interactive simulated system. Moreover, the system can record every part status in the production line. To improve the performance of ESPOG, we apply grid computing to solve load imbalance. The experimental results show that our ESPOG can let users to monitor the process clearly and has good performance.
Contents
誌謝 i
摘要 ii
ABSTRACT iii
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 The Simulation System 4
2.2 Glass Substrate 6
2.3 Two-tier and Three-tier Architectures 8
2.4 The Grid Middleware 9
Chapter 3 The System Architecture of ESPOG 10
3.1 The Process Simulation 10
3.2 The Equipment Simulation 13
3.3 The Defective Goods Simulation 15
3.4 The Logical Computing 16
3.5 The Grid Interface 20
Chapter 4 Simulation and Experimental Results 25
4.1 The Discussion of Simulation Results 28
4.1.1 The Process property 28
4.1.2 The Equipment property 29
4.1.3 The Random Variable property 31
4.2 The Discussion of The System Efficiency 32
Chapter 5 Conclusions and Future Work 34
References 36

List of Figures
FIGURE 1: THE STRUCTURE OF THE SIMULATION SYSTEM 4
FIGURE 2: SIMULATION EXAMPLES USING ARENA AND AWESIM 5
FIGURE 3: THE HOT-PROCESS 7
FIGURE 4: TRADITIONAL FOUNDING GLASS PROCESS DIAGRAM) 7
FIGURE 5: THE 3-TIER ARCHITECTURE 8
FIGURE 6: SYSTEM ARCHITECTURE OF ESPOG 10
FIGURE 7: TWO CONNECTION TYPES OF PROCESS 11
FIGURE 8: TWO COMPONENTS OF PROCESS SIMULATION 11
FIGURE 9: THE CONVEYER BELT CIRCULATE 11
FIGURE 10: THE FLOW CHART OF THE PROCESS SIMULATION 13
FIGURE 11: THE EQUIPMENT CAPACITY SIMULATION. 14
FIGURE 12: THE EQUIPMENT FAILURE SIMULATION 14
FIGURE 13: THE FLOW CHART OF THE EQUIPMENT SIMULATION. 15
FIGURE 14: THE DEFECTIVE GOODS SIMULATION 15
FIGURE 15: THE FLOW CHART OF THE DEFECTIVE GOODS SIMULATION. 16
FIGURE 16: THE PROCESS SIMULATION ALGORITHM. 19
FIGURE 17: THE EQUIPMENT FAILURE SIMULATION ALGORITHM. 20
FIGURE 18: THE DEFECTIVE GOODS SIMULATION ALGORITHM. 20
FIGURE 19: THE GRID PORTAL AND ENVIRONMENT 21
FIGURE 20: JOBS ALLOCATING METHOD FOR FOUR AND EIGHT NODES. 22
FIGURE 21: JOBS EXECUTING STATUS FOR 4 AND 8 NODES. 22
FIGURE 22: THE SEQUENTIAL AND PARALLEL JOBS ALGORITHM. 23
FIGURE 23: THE GRID INTERFACE FLOW CHAR 24
FIGURE 24: THE RESULTS OF PROCESS SIMULATION. 26
FIGURE 25: THE RESULTS OF EQUIPMENT FAILURE 26
FIGURE 26: THE RESULTS OF DEFECTIVE GOODS SIMULATION 27
FIGURE 27: THE EVALUATION PAGE 1 27
FIGURE 28: THE EVALUATION PAGE 2 28
FIGURE 29: THE SYSTEM EFFICIENCY 32
FIGURE 30: THE DETAILED EFFECTIVENESS OF LOAD BALANCING 33

List of Tables

TABLE 1: DESCRIPTION OF PARAMETERS FOR SIMULATION 17
TABLE2: THE PROCESS PROPERTY COMPARISON 29
TABLE3: THE PERFORMANCE MEASURE OF PROCESS PROPERTY 29
TABLE4: THE EQUIPMENT PROPERTY COMPARISON 30
TABLE5: THE PERFORMANCE MEASURE OF EQUIPMENT PROPERTY 30
TABLE6: THE RANDOM VARIABLE PROPERTY COMPARISON 31
TABLE7: THE PERFORMANCE MEASURE OF RANDOM VARIABLE PROPERTY 31
TABLE8: THE SYSTEM COMPARISON 34
[1]W. David Kelton, Randall P. Sadowski, and David T. Sturrock(2003), Simulation with Arena, The McGraw-Hill Companies,.
[2]Jean O’Reilly. “Introduction to AweSim,” Proceedings of the Winter Simulation Conference, pp.221-224, 2002.
[3]John Goble, “MODSIM III – A Tutorial,” Proceedings of the Winter Simulation Conference, pp.601-605, 1997.
[4]Ball P. “Introduction to discrete event simulation.” Originally presented at the 2nd DYCOMANS workshopon Management and Control: Tools in Action, pp. 367-376, 1996.
http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html.
[5]L.F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, “Discrete Event Simulation for Batch Processing,” Proceedings of the Winter Simulation Conference, pp.1929-1934, 2006.
[6]Averill M. Law and Michael G. McComas, “Simulation of Manufacturing Systems,” Proceedings of the Winter Simulation Conference, pp.56-59, 1999.
[7]Micrografx, “The role of process modeling and management within six sigma.“ White thesis. Dallas Texas 2001.
[8]Park, S, and L. Leemis. “Discrete-event simulation: A first course.” Presentation, College of William and Mary.
http://www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt.
[9]The Corning Incorporated, http://www.corning.com/
[10]LarryHorath,, ” TED 225 Material Processing II”, Engineering and Technology California University of Pennsylvania, 2002.
http://workforce.cup.edu/Horath/TED225%20Course%20Packet%20FA01.pdf
[11]H. An C., ”The state of play and challenge of the hot process of TFT LCD glass substrate”, Chemical Engineering, vol. 51, no.5, pp. 58-67, 2004.
[12]The Globus Alliance, http://www.globus.org/
[13]The Open Grid Forum, http://www.ogf.org/
[14]The ChinaGrid, http://www.chinagrid.net/
[15]I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual Organizations," International J. of Supercomputer Applications, vol. 15, no. 3, pp.200-222, 2001.
[16]I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration," Open Grid Service Infrastructure WG, Global Grid Forum, June 2002.
[17]I. Foster, C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit," Int’l J. Supercomputer Applications, vol. 11, no. 2, pp. 115-128, 1997.
[18]I. Foster, C. Kesselman, J. Nick and S. Tuecke, "Grid services for distributed system integration," IEEE Computer, vol. 35, no. 6, pp.37-46, 2002.
[19]Junawei Cao, Stephen A. Jarivis, and Subhash Saini Graham R, "GridFlow: Workflow Management for Grid Computing", Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 198-205, 2003.
[20]Satoshi Matsuoka, "Grid RPC meets Data Grid: Network Enabled Services for Data Farming on the Grid, ” Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid , pp. 13-15, 2001.
[21]The Open Middleware Infrastructure Institute UK (OMII-UK), http://www.omii.ac.uk
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top