(3.236.214.19) 您好!臺灣時間:2021/05/06 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李敏駿
研究生(外文):Min-Chun Lee
論文名稱:母體高血糖對胎兒腎臟發育的影響
論文名稱(外文):The effect of maternal hyperglycemia on the development of kidney in mice fetus
指導教授:林清淵林清淵引用關係
指導教授(外文):Ching-Yuang Lin
學位類別:碩士
校院名稱:長榮大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:81
中文關鍵詞:母體高血糖腎臟發育細胞凋亡
外文關鍵詞:maternal hyperglycemiakidney developmentapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
哺乳類的腎臟發育主要區分為三個階段,第三個階段稱為後腎期用於形成後腎系統,它開始於人類孕期的第五週,相當於實驗小鼠孕期的第10.5至11天,並且於懷孕的第13.0天,完全形成後腎。
後腎是將來成熟腎臟的前趨組織,後腎主要是由兩個部分:後腎間葉組織(metanephric mesenchyme) 和輸尿管芽(ureteric bud)交互作用而形成將來的成熟腎臟。在後腎轉化為成熟腎臟的期間,根據文獻,有很多生長的訊息、化學物質或萃取物,在不同的階段與不同的位置上作表達,藉以維持後腎間葉組織(metanephric mesenchyme) 和輸尿管芽(ureteric bud) 的正常互動,並且促進胚胎腎臟的成熟,例如: BMP-7、LIF、Pituitary extract、oncostatin M、GDNF、EGR-alpha、Wnts、FGFs等,扮演著促進生長,抑制拮抗,細胞間交互作用等等調控機制,來完成腎臟的生長與發育。
有許多的研究指出,母親糖尿病 (maternal diabetes) 會導致胎兒許多器官之生長發育異常或缺損,就人類而言,infants of diabetic mothers比起正常新生兒,高出3 ~ 4倍的機率會導致先天性的異常或缺損。在腎臟發育方面,由臨床觀察經驗,可見到先天性腎臟發育不全,馬蹄腎,先天小腎等。
我們設計了一個動物實驗,以藥物streptozotocin (STZ) 腹腔注射的方式來誘導C57BL/6J實驗小鼠成為糖尿病小鼠,並且讓這樣的小鼠交配懷孕藉此方式來建立一個母體高血糖與胎兒腎臟發育缺損與異常的關聯模式,由gross observation,histological observation,基因與分子生物醫學等各個方面,去瞭解某些特定基因與腎臟發育結構上,因母體高血糖的影響而造成腎臟生長發育異常的相關性。
結果中發現糖尿病小鼠胚胎的確存有腎臟發育異常的情形,其中包含腎臟單側發育(renal agenesis)及雙套泌尿系統(duplication of collecting system); 組織學的觀察則是可見到腎元(nephrons)數目較正常對照組明顯減少,以及在腎臟腎小管與collect tubular system部分,可見到明顯的renal tubular detachment的情形;分子生物學的部分則是發現Wnt11、FGFs、Cyclins的基因表達有partial inhibition的情形,且GDNF與 EGRa在糖尿病母鼠的胚胎腎臟發育過程中有complete block的現象。根據以上的結果可初步的看見母體高血糖對胎兒腎臟發育的影響,這將有助於吾人由分子細胞學,基因遺傳學,以及器官發育等等之層次,來瞭解母體糖尿病對胎兒腎臟生長發育之影響與衝擊,並作為日後分子醫學及基因治療之先驅。
Mammalian kidney development is divided into three stage: pronephros, mesonephros, and metanephros. Metanephros stage starts since gestational age of 5th weeks of human being and embryonic 10.5 to 11 day of mice. Metanephros is precursor of the adult mammalian kidney. According to previous experiments and studies, some of the genes play the roles of growth signals to promote kidney development: including FGF-2, BMP-7, LIF, Wnts, pituitary extract oncostain M etc. These genes control and adjust the growth of kidneys at specific regions, and at specific different period.
According to the clinic experiences and animal model findings, maternal diseases will induce fetal growth defects and development abnormalities. In human, infants of diabetic mothers reveal 3- to 4-fold incidence of congenital abnormalities. In renal diabetic embryopathy, by clinical observation experience, can see congenital renal agenesis, horseshoe kidney, congenital small kidney, etc.
We had established a mice animal model to confirm the relationship of maternal hyperglycemia and defects/abnormalies of fetal kidney development. Our female mice, C57BL/6J, had been induced to become diabetic mice by intra- peritoneal injection of streptozotocin. These treated mice had been sacrificed after pregnancy, then fetuses was harvested for kidney observation and experiment. The structure abnormalities including renal agenesis and duplication of collecting system were found via gross observation. Microscopic observation disclosed nephron number decreasing and renal tubular detachment.
In molecular study, through RT-PCR analysis, we found that some gene expressions were partial inhibited at fetal kidneys of DM maternal mice (included Wnt11, FGFs, and Cyclins). Otherwise, GDNF and EGR-alpha expressions were blocked completely. All of our findings provide a new aspect of kidney development of diabetic embryopathies in the levels of molecular biology, gene science, and the organ structural development, etc. Furthermore, our study regarded as preliminary experience of molecule medical science and gene therapy of renal diabetic embryopathy in the future.
目錄
中文摘要1
英文摘要2
第一章、緒論3
第一節、腎臟的發育3
第二節、 腎臟發育過程的訊息因子3
第三節、訊息因子個論4
第四節、建立一個由STZ所導致的母鼠高血糖模式7
第五節、 母體高血糖和腎臟發育異常的觀察8
第六節、腎臟超音波迴音強度的臨床應用9
第七節、研究目的9
第二章、研究方法與材料10
第一節、實驗步驟10
第二節、實驗儀器20
第三章、結果21
第一節、誘發高血糖母鼠的統計比例21
第二節、高血糖母鼠的觀察21
第三節、高血糖母鼠之胎鼠的外觀觀察22
第四節、高血糖母鼠之胎鼠的體重、體長和腎臟重量與對照組的比較22
第五節、高血糖母鼠之胎鼠的組織學結果22
第六節、高血糖母鼠之胎鼠的細胞凋亡和增生的觀察23
第七節、建立胎鼠腎臟細胞的初級培養23
第八節、高血糖母鼠之胎鼠與仔鼠的分子生物學結果24
第九節、以FISH觀察GDNF、EGR1和EGRa的表達型態25
第十節、人類腎臟超音波迴音強度的比較26
第四章、 討論27
第一節、胚胎收集的時間點設定及限制27
第二節、STZ注射劑量和血糖反應的控制27
第三節、胎鼠和仔鼠的先天性畸形28
第四節、胎鼠和仔鼠的體重、體長和腎臟重量的異常變化28
第五節、胚胎腎臟細胞的初級培養方式29
第六節、分生層次的基因選擇29
第七節、GDNF、EGR1、EGRα的相關性30
第八節、腎臟超音波迴音強度與人類糖尿病妊娠子代腎臟發育的關連30
第九節、未來實驗方向與展望31
參考資料32
表格
表一、高血糖母鼠之胎鼠與仔鼠的致死率比較37
表二、引子一覽表38
圖片
圖一、小鼠胚胎腎臟發育過程39
圖二、哺乳類腎臟發育過程的相互作用40
圖三、GDNF-RET的訊息分子作用途徑41
圖四、EGRa和Tieg1的 mRNA Map42
圖五、建立高血糖母鼠的模式流程43
圖六、高血糖母鼠過期妊娠及其胎鼠卡於產道之中44
圖七、高血糖母鼠和正常血糖母鼠泌尿道系統的比較45
圖八、高血糖母鼠妊娠天數過長所取出的仔鼠和正常血糖的仔鼠比較46
圖九、高血糖母鼠所取出的E17d的胎鼠和正常血糖的胎鼠比較47
圖十、高血糖母鼠所取出的E18d的胎鼠和正常血糖的胎鼠比較48
圖十一、高血糖母鼠和正常血糖母鼠所導致小鼠體重差異的比較49
圖十二、高血糖母鼠和正常血糖母鼠所導致小鼠體長差異的比較50
圖十三、高血糖母鼠和正常血糖母鼠所導致小鼠腎臟重量差異的比較51
圖十四、高血糖母鼠所產下的E16d的胎鼠其glomeruli異常(100X)52
圖十五、高血糖母鼠所產下的E16d的胎鼠其glomeruli異常(200X)53
圖十六、高血糖母鼠所產下的E17d的胎鼠其plevis異常(200X)54
圖十七、高血糖母鼠所產下的新生仔鼠glomeruli及tubular異常(100X)55
圖十八、BrdU assay在E18d胎鼠腎臟的比較56
圖十九、TUNEL assay在E17d胎鼠腎臟medulla的比較57
圖二十、TUNEL assay在NB1d新生仔鼠腎臟medulla和cortex的比較58
圖二十一、TUNEL assay的統計圖表59
圖二十二、初級培養的人類和小鼠胚胎腎絲球細胞型態比較60
圖二十三、初級培養的小鼠胚胎腎絲球細胞型態(對照組61
圖二十四、初級培養的小鼠胚胎腎小管細胞62
圖二十五、初級培養的小鼠胚胎腎絲球細胞型態(實驗組) 63
圖二十六、利用RT-PCR來偵測FGF10和Cdh1的表達64
圖二十七、利用RT-PCR來偵測GDNF、EGR1、Wnt11和FGF8的表達65
圖二十八、利用RT-PCR來偵測EGRa和Tieg1的表達66
圖二十九、利用RT-PCR來偵測Cyclin A和Cyclin D的表達67
圖三十、以GDNF Probe進行偵測(FISH),在E17d小鼠腎臟進行觀察68
圖三十一、以GDNF Probe進行偵測(FISH),在E18d小鼠腎臟進行觀察69
圖三十二、以GDNF Probe進行偵測(FISH),在NB1d仔鼠腎臟進行觀察70
圖三十三、以EGR1 Probe進行偵測(FISH),在E17d小鼠腎臟進行觀察71
圖三十四、以EGR1 Probe進行偵測(FISH),在E18d小鼠腎臟進行觀察72
圖三十五、以EGR1 Probe進行偵測(FISH),在NB1d小鼠腎臟進行觀察73
圖三十六、以EGRa和Tieg1 Probe進行偵測(FISH),E18d小鼠腎臟進行觀察74
圖三十七、EGRa和Tieg1 Probe進行偵測(FISH),NB1d小鼠腎臟進行觀察75
圖三十八、實驗組與對照組的孩童的腎臟/肝臟超音波迴音強度比值統計76
圖三十九、實驗組與對照組的孩童的腎臟/肝臟超音波迴音強度比值圖片77
附錄一 中華民國斐陶斐榮譽學會榮譽會員證書78
附錄二 財團法人彰化基督教醫院臨床試驗中心受訓合格證書79
附錄三 財團法人彰化基督教醫院動物實驗計畫審查證明書80
附錄四 財團法人彰化基督教醫院動物實驗計畫實驗動物追加、展期證明書81
1. Ahmed MM: Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr Cancer Drug Targets 2004; 4: 43-52.
2. Airaksinen MS, and Saarma M: The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3: 383-94.
3. Amri K, Freund N, Vilar J, Merlet-Bénichou C, Lelièvre-Pégorier M: Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 1999; 48: 2240-5.
4. Amri K, Freund N, Van Huyen JP, Merlet-Bénichou C, Lelièvre-Pégorier M: Altered nephrogenesis due to maternal diabetes is associated with increased expression of IGF-II/mannose-6-phosphate receptor in the fetal kidney. Diabetes 2001; 50: 1069-75.
5. Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Tempst P, Parravicini E, Malach S et al: Mesenchymal to epithelial conversion in rat metanephrons is induced by LIF. Cell 1999; 99: 377-86.
6. Becerra JE, Khoury MJ, Cordero JF, Erickson D: Diabetes mellitius during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics 1990; 85: 1-9.
7. Brenner BM, Garcia DL, Anderson S: Glomeruli and blood pressure: less of one, more of the other? Am J Hypertens 1988; 1: 335-47.
8. Brophy PD, Ostrom L, Lang KM, Dressler GR: Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 2001; 128: 4747-56.
9. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF: GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 1998; 21: 53-62.
10. Chalaux E et al: A zinc-finger transcription factor induced by TGF-beta promotes apoptotic cell death in epithelial Mv1Lu cells. FEBS Letters 1999; 457(3): 478-82.
11. Chan WH, Chan K, Koide T, Yeung S-M, Meung MBW, Copp AJ, Loeken MR, Shiroishi T, Shum ASW: Maternal diabetes increases the risk of caudal regression by retinoic acid. Diabetes 2002; 51: 2811-6.



12. Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, Vainio S: Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 2004; 131: 3345-56.
13. Chiou YY, Shieh CC, Cheng HL, Tang MJ: Intrinsic expression of Th2 cytokines in urothelium of congenital ureteropelvic junction obstruction. Kidney Int 2005; 67: 638-46.
14. Damasceno DC, Volpato GT, Calderon IDMP, Rudge MVC: Oxidative stress and diabetes in pregnant rats. 2002; 72 235-44.
15. Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J: The paired-box transcription factor, PAX2, positively modulateds expression of the Wilms tumor suppressor gene (WT1). Oncogene 1996 13: 447-53.
16. Dong GL, Xing LN, Liu XB, Liu W, Jin Q, Zhang SV: Early growth response-1 gene expression and its role in radiation-induced apoptosis of liver cancer cell lines. World J Gastroenterol 2006; 14: 2923-7.
17. Dressler GR: Development of the Excretory System In: Rossant J and Tam PPL eds. Mouse Development: Patterning, Morphogenesis and Organogenesis Academic Pr 2002; 395-420.
18. Dudley AT, Godin RE, Robertson EJ: Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999; 13: 1601-1613.
19. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al: GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996; 381: 789-93.
20. Eriksson UJ: The pathogenesis of congenital malformations in diabetic pregnancy. Diabetes Metab Rev 1995; 11: 63-82.
21. Fautsch MP, Vrabel A, Subramaniam M, Hefferen TE, Spelsberg TC, Wieben ED: TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters. Genomics 1998; 51: 408-16.
22. Goto MP and Goldman AS. Diabetic embryopathy. Current Opinion in Pediatrics 1994; 6(4): 486-91.
23. Hacohen N, Kramer S, Sutherland D, Hiromi Y, krasnow MA: Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998; 92: 253-263.
24. He C, Zalups RK, Henderson DA, Striker GE, Striker LJ: Molecular analysis of spontaneous glomerulosclerosis in Os/+mice, a model with reduced nephron mass. Am J Physiol 1995; 269: F266-73.
25. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, Van Velzen D: Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the “Disector” method and Cavalieri principle. Lab Invest 1991; 64: 777–84.
26. Hur K, Kim JR, Yoon BI, et al: Overexpression of cyclin D1 and cyclin E in 1,2-dimethylhydrazine dihydrochloride-induced rat colon carcinogenesis. J Vet Sci 2000, 1:121-6.
27. Kanwar YS, Nayak B, Lin S, Akagi S, Xie P, Wada J, Chugh SS, Danesh FR: Hyperglycemia: its imminent effects on mammalian nephrogenesis. Pediatr Nephrol 2005; 20: 858-66.
28. Kispert A, Vaino S, McMahon AP: Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 1998; 125: 4225-34.
29. Kreidberg JA : WT1 is required for early kidney development. Cell 1993; 74: 679-91
30. Kumar A, Wallner EI, Carone FA, Scarpelli DG, Kanwar YS: Relevance of proto-oncogenes as growth modulators in organogenesis of the mammalian embryonic kidney. Int J Dev Biol 1997; 41: 643-53.
31. Langley-Evans SC, Welham SJ, Jackson AA: Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 1999; 64: 965-74.
32. Lelièvre-Pégorier M, Merlet-Bénichou C: The number of nephrons in the mammalian kidney: environmental influences play a determining role. Exp Nephrol 2000; 8: 63-5.
33. Leung MB, Choy KW, Copp AJ, Pang CP, Shum AS: Hyperglycemia potentiates the teratogenecity of retinoic acid in diabetic pregnancy in mice. Diabetologia 2004; 47: 515-22.
34. Like A and Rossini A: Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 1976; 193, 415-7.
35. Luo G, Hofmann C, Bronckers ALJ, Sohocki M, Bradley A, Karsenty G: BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995; 9: 2808-20.
36. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP: Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 2003; 13: 3175-85.
37. Manie S, Santoro M, Fusco A and Billaud M: The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 2001; 17: 580-9.

38. Masaki T, Foti R, Hill PA, Ikezumi Y, Atkins RC, Nikolic-Paterson DJ: Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int 2003; 63: 1256-64.
39. Mills JL: Malformations in infants of diabetic mothers. Teratology 1982; 25: 385-94.
40. Nelson RG, Morgenstern H, Bennett PH: Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 1998; 47: 1489-93.
41. Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, Pham TA, et al: A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J pathol 2002; 160: 2295-307.
42. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N: FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 2000; 3: 643-9.
43. Osathanondh B, Potter EL: Development of human kidney as shown by microdissection. III. Formation and interrelationships of collecting tubules and nephrons. Arch Pathol 1963; 76: 290-302.
44. Overduin M, Harver TS, Bagby S, Tong KI, Yau P, Takeichi M, Ikura M: Solution structure of the epithelial cadherin domain reponsible for selective cell adhesion. Science 1995; 267, 386-9.
45. Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G: Cyclin A is required at two points in the human cell cycle. EMBO J 1992;11: 961-71.
46. Parving HH, Osterby R, Anderson PW, Hsueh WA: Diabetic nephropathy. In: Brenner BM, Rector, eds. The Kidney, vol. 2, 5th edn. WB Saunders, Philadelphia: 1996; 1864–92.
47. Ribeiro A, Bronk SF, Roberts PJ, Urrutia R, Gores GJ: The transforming growth factor beta1-inducible transcription factor, TIEG1, mediates apoptosis through oxidative stress. Hepatology 1999; 30, 1490–7.
48. Sariola H and Saarma M: GDNF and its receptors in the regulation of the ureteric branching. Int J Dev Biol 1999; 43: 413-8.
49. Sariola H. Nephron induction. Nephrol Dial Transplant 2002; 17: 88- 90.
50. Saxen L: Organogenesis of the kidney. Cambridge University Press, New York, 1987, pp 1-173.
51. Sheih CP, Liu MB, Hung CS, Yang KH, Chen WY, Lin CY: Renal abnormalities in school children. Pediatrics 1989; 84: 1086-90.
52. Stark K, Vainio S, Vassileva G, McMahon AP: Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature; 1994: 372, 679-83.
53. Subramaniam M et al: Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. Journal of Cell Biochemistry 1998; 68(2): 226-36.
54. Suhonen L, Hiilesmaa V, Termo K: Glycaemic control during early pregnancy and fetal malformations in women with type I diabetes mellitus. Diabetologia 2000; 43: 79-82.
55. Tachibana I., Imoto M, Adjei PN, Gores GJ, Subramaniam M, Spelsberg TC, Urrutia R: Overexpression of the TGF-beta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 1997; 99: 2365-74.
56. Torres M, Gomez-Pardo E, Dressler GR, Gruss P: Pax-2 control multiple steps of urogenital development. Development 1995; 121: 4057-65.
57. Vade A, Lau P, Smick J, Harris V, Ryva J: Sonographic renal parameters as related to age. Pediatr Radiol 1987; 17: 212 -5.
58. Vainio S, Lin Y: Coordinating early kidney development: Lessons from gene targeting. Nat Rev Genet 2002; 3: 533-43.
59. Vukicevic S, Kopp JB, Luyten FP, Sampath TK: Induction of nephrogenic mesenchyme by osteogenic protein 1 (bone morphogenetic protein 7). Proc Natl Acad Sci USA .1996; 93: 9021-26.
60. Wiznitzer A, Ayalon N, Hershkovitz R, Khamaisi M, Reece EA, Trischler H, Bashan N: Lipoic acid prevention of neural tube defects in offspring of rats with streptozocin-induced diabetes. Am J Obstet Gynecol 1999; 180(1): 188-93.
61. Yajima S: Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). Journal of Neuroscience 1997; 17: 8657-66.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔