(3.230.154.160) 您好!臺灣時間:2021/05/08 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林喆
研究生(外文):Che Lin
論文名稱:肝醣分解及自然免疫指標在致死性或次致死性敗血症的實驗動物模式的角色
論文名稱(外文):Role of Glycogenolytic and Innate Immunological Markers during Lethal and Sublethal Sepsis in Experimental Animal Model
指導教授:林清淵林清淵引用關係
指導教授(外文):Ching-Yuang Lin
學位類別:碩士
校院名稱:長榮大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:胰島素葡萄糖-6-磷酸酶葡萄糖6磷酸轉送酶MyD88干擾素-beta
外文關鍵詞:insulinglucose 6 phosphataseglucose 6 phosphate transportermyeloid differentiation factor 88interferon beta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌敗血症會致命的機轉,假說很多,聚焦在一個假說:”在致命低血糖, 能否在適當時間、適當反應,決定是否存活”; MyD88獨立路徑可能使血糖利用增加,藉由MyD88獨立路徑連鎖反應後線產物的測量, 和血糖相關影響因子的分析(血糖、血清胰島素值、肝臟葡萄糖-6-磷酸酶、肝臟葡萄糖6磷酸轉送酶、肝臟干擾素-beta),找出和細菌敗血症致命低血糖的相關性因子。
試驗致病菌大腸桿菌ATCC259222的致死劑量(LD, 注射後72小時內小鼠100% 致死的最低劑量); 四十八隻BALB/c 6週齡雄性小鼠, 分為三組(控制組、近致死組、致死組), 除了控制組, 近致死組(0.1LD, 給予1/10倍致死劑量)及致死組(10LD, 給予10倍致死劑量), 腹腔內注射致病菌大腸桿菌ATCC25922, 控制組注射等體積的LB培養液。結果顯示:在次致死組血清胰島素值會逐漸的增加(第6小時、第3天、第7天)次致死組和致死組比較時, 次致死組血清胰島素值在第6小時較高, 具統計學上的差異(P<0.05);在第6小時, 次致死組(0.1LD)和致死組(10LD)都會降低肝臟葡萄糖-6-磷酸酶活性(和控制組比較的百分比, 次致死組51±32% vs. 致死組72±23 % , P> 0.05 ); 然而,在次致死組肝臟葡萄糖-6-磷酸酶活性會隨著血糖反彈增加(第3天、第7天), 次致死組在第三天增加最多肝臟葡萄糖-6-磷酸酶活性 (和控制組比較的百分比,控制組,第6小時, 100±8%;次致死組,第6小時, 51±9%; 次致死組, 第3天, 108±6%; 次致死組,第7天, 103±6%;致死組,第6小時, 72±9%); 次致死組和致死組比較時,在第6小時次致死組肝臟葡萄糖6磷酸轉送酶訊息核醣核酸較低,(和控制組比較的百分比, 次致死組32±4% vs. 致死組144±32 % ,具統計學上的差異, P<0.05);肝臟葡萄糖6磷酸轉送酶訊息核醣核酸次致死組在第七天增加最多(和控制組比較的百分比,控制組,第6小時, 100±4%;次致死組,第6小時, 32±4%; 次致死組, 第3天, 231±17%; 次致死組,第7天, 412±30%;致死組,第6小時, 144±32 %);肝臟葡萄糖-6-磷酸酶及肝臟葡萄糖6磷酸轉送酶, 在三組間有統計差異, 和敗血症動物的死亡有關係。在注射致病菌6小時, 肝臟 TRAM (MyD88獨立路徑上游),近致死組肝臟TRAM表現量比致死組要高 (368±33 vs. 29±6 %和控制組比較, P<0.05); MyD88獨立路徑中游的IRF-3 和干擾素-beta在組織免疫化學反應有相近的反應; 在肝臟西方點墨反應結果,MyD88獨立路徑中游的IRF-3以及下游的晚期NF-κB也有相似的反應。
壹、中文摘要
細菌敗血症會致命的機轉,假說很多,聚焦在一個假說:”在致命低血糖, 能否在適當時間、適當反應,決定是否存活”; MyD88獨立路徑可能使血糖利用增加,藉由MyD88獨立路徑連鎖反應後線產物的測量, 和血糖相關影響因子的分析(血糖、血清胰島素值、肝臟葡萄糖-6-磷酸酶、肝臟葡萄糖6磷酸轉送酶、肝臟干擾素-beta),找出和細菌敗血症致命低血糖的相關性因子。
總結,除了傳統的MyD88非獨立路徑,對於致命的敗血症低血糖,能否即時啟動MyD88獨立路徑、TRAM訊息核醣核酸適當表現、晚期NF-κB之磷酸化、IRF-3蛋白增加、干擾素-beta蛋白增加、使血糖利用增加,可能是細菌敗血症存活的關鍵。
We focused on the hypothesis that rebound hypoglycemia with activating MyD88-independent pathway are required for the survival of lethal hypoglycemia in sepsis. Forty-eight mice (BALB/c) were divided into three groups (control, sublethal, and lethal group).
The results showed that at 6 hours sublethal dose E. coli (0.1LD) decreased blood glucose as the same as lethal dose E. coli (10LD). The blood insulin concentrations were significantly higher at 6 hours (P<0.05) in the sublethal group compared with those in the lethal group. Liver G6Pase activity levels rebounded with blood glucose at 3 days and 7 days in the sublethal group. The sublethal group induced the greatest fold increase of liver G6Pase activity at 3 days. Liver G6PT mRNA measured by realtime PCR revealed liver G6PT levels were lower at 6 hours in the sublethal group compared with those in the lethal group. The sublethal group induced the greatest fold increase of liver G6PT mRNA at 7 days. Liver TRAM mRNA measured by realtime PCR revealed liver TRAM levels were higher at 6 hours in the sublethal group compared with those in the lethal group. The sublethal group induced the greatest fold increase of liver G6PT mRNA at 3 days. These results indicated that the lethal group reduced TRAM production and subsequent expression of IRF-3 and IFN-beta proteins in liver IHC. The increase in NF-kappaB protein was accounted for by western blot in the sublethal group and compared with those in the lethal group at 6 hours. The level of NF-kappaB protein increased 6 hours through 7days progressively in the sublethal group. The increase in IRF-3 protein was accounted for by western blot in the sublethal group and compared with those in the lethal group. The level of IRF-3 protein increased progressively from 6 hours to 7 days in the sublethal group. The levels of IRF-3 in lethal group were lower than those of control group. The sublethal group induced the greatest increase of liver IFN-beta protein at 3 days. This data suggests that lethal dose E. coli reduces activation of IFN-beta. Interestingly, blood insulin decrease was synchronic with IFN-beta decrease.
Finally, compared with a sublethal dose of E. coli ATCC 25922, sepsis induced by a lethal dose causes blood insulin decrease, liver G6PT mRNA expression increase, liver TRAM mRNA expression and protein decrease, liver NF-kappaB protein decrease, liver IRF-3 protein decrease, and liver IFN-beta protein decrease.
壹、 中文摘要 5
貳、 英文摘要 6
参、 緒論 7
一、為何要研究MyD88獨立路徑在敗血症存活的影響,正反意

二、MyD88獨立路徑中干擾素相關的糖代謝和敗血症存活有關係
三、不僅在基礎研究中,在臨床研究中”MyD88獨立路徑中干擾素相
關的糖代謝和敗血症存活有關係”,也被重要文獻所強
調
四、這個研究對增加敗血症病人存活率有重要意義
肆、 研究材料與方法 13
一、動物的準備
二、引發MyD88反應的細菌準備
三、動物血及組織檢體的準備
四、血清胰島素值及血糖的測定
五、肝G6Pase(葡萄糖-6-磷酸酶)測定
六、即時聚合酶鏈連鎖反應
七、組織免疫化學反應
八、西方點墨反應
九、分析與統計方法
伍、 結果 31
一、血清胰島素值及血糖和敗血症動物的死亡有關係
二、肝臟G6Pase(葡萄糖-6-磷酸酶)及肝臟葡萄糖6磷酸轉送酶和敗血
症動物的血糖有關
三、即時聚合酶鏈連鎖反應顯示MyD88獨立路徑上游的肝臟TRAM
減少,和敗血症動物的死亡有關係
四、組織免疫化學反應顯示MyD88獨立路徑中游的肝干擾素-beta減
少,和敗血症動物的死亡有關係
五、西方點墨反應比對血糖,顯示MyD88獨立路徑下游的肝干擾素
-beta和敗血症動物的血糖有關係
陸、 討論 34
柒、 展望 37
捌、 參考文獻 43
玖、 圖表 48
表1.1 細胞激素和它們的功能
圖1.a在不同組別BALB/c 雄性小鼠 (控制組、次致死組、致死組),
注射E. coli ATCC 25922後(控制組除外) ,在不同的時間點下
血清胰島素值和血糖的變化; 圖1.b 肝臟葡萄糖-6-磷酸酶的變
化;圖1.c肝臟葡萄糖6磷酸轉送酶的變化
圖2.a 在不同組別(控制組、次致死組、致死組),在不同的時間點下
肝臟MyD88 訊息核醣核酸的即時聚合酶鏈連鎖反應變化; 圖
2.b 肝臟TRAM訊息核醣核酸的即時聚合酶鏈連鎖反應的變化
圖3.1、圖3.2、圖3.3、圖3.4 : 在不同組別(控制組、次致死組、致
死組),在不同的時間點下肝臟MyD88、TRAM、干擾素-beta 蛋
白的組織免疫化學反應變化
圖4: 在不同組別(控制組、次致死組、致死組),在不同的時間點下
肝臟(細胞核內比細胞質)NF-?羠的西方點墨反應變化
圖5: 在不同組別(控制組、次致死組、致死組),在不同的時間點下
肝臟(細胞核內比細胞質)IRF-3的西方點墨反應變化
圖6: 比對血清胰島素值,在不同組別(控制組、次致死組致死組),
及不同的時間點下肝臟干擾素-beta的西方點墨反應變化
圖7: 我們認為的,MyD88獨立路徑如何影響敗血症預後的假說
圖8: TLR4和MyD88獨立路徑
圖9: CD14、TLR4、MyD88獨立路徑
圖10:多形細胞、巨噬細胞、樹狀細胞、TLR4、MyD88獨立路徑、自
然殺手細胞、T淋巴球、B淋巴球共同作用的假說
拾、附錄 65
1. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS. Role of transcriptional activation of I kappa B alpha in medication of immunosuppresion by glucocorticoids. Science. 1995;13:270:283-6.
2. Rattarasarn C. Hypoglycemia in sepsis: risk factors and clinical characteristics.J Med Assoc Thai. 1997;80:760-6.
3. Maitra SR, Homan CS, Pan W, Geller ER, Henry MC, Thode HC. Renal gluconeogenesis and blood flow during endotoxic shock. Acad Emerg Med. 1996;3:1006-10.
4. Losek JD. Hypoglycemia and the ABC''S (sugar) of pediatric resuscitation. Ann Emerg Med. 2000;35:43-6.
5. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015-25.
6. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated Myd88-independent signaling pathway. Nat Immunol. 2003;4:1144-50.
7. Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, et al. ROS-dependent activation of the TRAF6-ASK1-P38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol. 2005;6:587-92.
8. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444:847-53.
9. Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, et al. CD14 is required for Myd88-independent LPS signaling. Nat Immunol. 2005;6:565-70.
10. Bady I, Zitoun C, Guignot L, Mithieux G. Activation of liver G-6-Pase in response to insulin-induced hypoglycemia or epinephrine infusion in the rat. Am J Physiol Endocrinol Metab. 2002;282:E905-10.
11. Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L. Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest. 1998;102:744-53.
12. Pelegrin M, Devedjian JC, Costa C, Visa J, Solanes G, Pujol A, et al. Evidence from transgenic mice that interferon-beta may be involved in the onset of diabetes mellitus. J Biol Chem. 1998;273:12332-40.
13. Wang D, Wei Y, Schmoll D, Maclean KN, Pagliassotti MJ. Endoplasmic reticulum stress increases glucose-6-phosphatase and glucose cycling in liver cells. Endocrinology. 2006;147:350-8.
14. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002;420:324-9.
15. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-?? links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191-8.
16. Van Den Berghe G, Wouters P, Weekers F, Verwaest F, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359-67.
17. Van Den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449-61.
18. Deutschman CS, Andrejko KM, Haber BA, Bellin L, Elenko E, Harrison R, et al. Sepsis-induced depression of rat glucose-6-phosphatase gene expression and activity. Am J Physiol Regul Integr Comp Physiol. 1997;273:1709-18.
19. Kawai T, Takeuchi O, Fujita T, Inoue J, Mühlradt PF, Sato S, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol. 2001;167:5887.
20. Nguyen RN, Taylor LS, Tauschek M, Robins-Browne RM. Atypical enteropathogenic Escherichia coli infection and prolonged diarrhea in children. Emerg Infect Dis. 2006;12:597-603.
21. Weighardt H, Kaiser-Moore S, Vabulas RM, Kirschning CJ, Wagner H, Holzmann B. Myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J Immunol. 2002;169:2823-7.
22. Bartoloni A, Pallecchi L, Benedetti M, Fernandez C, Vallejos Y, Guzman E, et al. Multidrug-resistant commensal Escherichia coli in Children, Peru and Bolivia. Emerg Infect Dis. 2006;12:907-13.
23. Calogero S, Grassi F, Aguzzi A, Voigtländer T, Ferrier P, Ferrari S, et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet. 1999;22:276-80.
24. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413:179-83.
25. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, et al. Role of genotype in the cycle of violence in maltreated children. Science. 2002;297:752.
26. Levine S. Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: the role of maternal behavior. Neurotox Res. 2002;4:557-64.
27. Meaney MJ. Maternal care, gene expression, and the transmission of the individual differences in stress reactivity across generations. Annu Rev Neurosci. 2001;24:1161-92.
28. Selye H. Stress and the general adaptation syndrome. Br Med J. 1950;1:1383-92.
29. Felten DL. Neurotransmitter signaling of cells of the immune system: important progress, major gaps. Brain Behav Immun. 1991;5:2-8.
30. Ottaway CA, Husband AJ. The influence of neuroendocrine pathways on lymphocyte migration. 1994;15:511-7.
31. Bachen EA, Manuck SB, Cohen S, Muldoon MF, Raible R, Herbert TB, et al. Adrenergic blockade ameliorates cellular immune responses to mental stress in humans. Psychosom Med. 1995 ;57:366-72.
32. Rozlog LA, Kiecolt-Glaser JK, Marucha PT, Sheridan JF, Glaser R. Stress and immunity:implications for viral disease and wound healing. J Periodontol. 1999;70:786-92.
33. Sheridan JF, Dobbs C, Brown D, Zwilling B. Psychoneuroimmunology: stress effects on pathogenesis and immunity during infection. Clin Microbiol Rev. 1994;7:200-12.
34. Hermann G, Beck FM, Sheridan JF. Stress-induced glucocorticoid response modulates mononuclear cell trafficking during an experimental influenza viral infection. J neuroimmunol. 1995;56:179-86.
35. Glaser R, Kiecolt-Glaser JK, Bonneau RH, Malarkey W, Kennedy S, Hughes J. Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosom Med. 1992;54:22-9.
36. Burns VE, Ring C, Drayson M, Carroll D. Cortisol and cardiovascular reactions to mental stress and antibody status following hepatitis B vaccination: a preliminary study. Psychophysiology. 2002;39:361-8.
37. Bonneau RH, Fu TM, Tevethia SS. In vivo priming and activation of memory cytotoxic T-lymphocytes (CTL) by a chimeric simian virus 40 T antigen expressing an eight amino acid residue herpes simplex virus gB CTL epitope. Virology. 1993;197:782-7.
38. Glaser R, Kiecolt-Glaser JK, Speicher CE, Holliday JE. Stress, loneliness, and changes in herpes virus latency. J Behav Med. 1985;8:249-60.
39. Glaser R, Rice J, Sheridan J, Fertel R, Stout J, Speicher C, et al. Stress-related immune suppression: health implications. Brain Behav Immun. 1987;1:7-20.
40. Larson MR, Ader R, Moynihan JA. Heart rate, neuroendocrine, and immunological reactivity in response to an acute laboratory stressor. Psychosom Med. 2001;63:493-501.
41. Glaser R, Kutz LA, MacCallum RC, Malarkey WB. Hormonal modulation of Epstein-Barr virus replication. Neuroendocrinology. 1995;62:356-61.
42. Moncek F, Kvetnansky R, Jezova D. Differential responses to stress stimuli of Lewis and Fischer rats at the pituitary and adrenocortical level. Endocr Regul. 2001;35:35-41.
43. Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW, et al. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA. 1989;86:2374-8.
44. Sternberg EM, Chrousos GP, Wilder RL, Gold PW. The stress response and the regulation of inflammatory disease. Ann Intern Med. 1992;117:854-866.
45. Carobrez SG, Gasparotto OC, Buwalda B, Bohus B. Long-term consequences of social stress on corticosterone and IL-1beta levels in endotoxin challenged rats. Physiol Behav. 2002;76:99-105.
46. Cacioppo JT, Poehlmann KM, Kiecolt-Glaser JK, Malarkey WB, Burleson MH, Berntson GG, et al. Cellular immune responses to acute stress in female caregivers of dementia patients and matched controls. Health Psychol. 1998;17:182-9.
47. Kiecolt-Glaser JK, Marucha PT, Malarkey WB, Mercado AM, Glaser R. Slowing of wound healing by psychological stress. Lancet. 1995;346:1194-6.
48. Marucha PT, Kiecolt-Glaser JK, Favagehi M. Mucosal wound healing is impaired by examination stress. Psychosom Med. 1998;60:362-5.
49. Uchino BN, Cacioppo JT, Malarkey W, Glaser R. Individual differences in cardiac sympathetic control predict endocrine and immune responses to acute psychological stress. J Pers Soc Psychol. 1995;69:736-43.
50. Cacioppo JT, Malarkey WB, Kiecolt-Glaser JK, Uchino BN, Spoutas-Emch SA, Sheridan JF, et al. Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosom Med. 1995;57:154-64.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔