跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/21 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉長泓
研究生(外文):Chang-Hung Yeh
論文名稱:側風與擴散效應對捕集裝置的捕集效率影響
論文名稱(外文):The Effects of Cross-draft and Diffusion to the Efficiency of a Collection Device
指導教授:陳友剛陳友剛引用關係
學位類別:碩士
校院名稱:長榮大學
系所名稱:職業安全與衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:收集裝置捕集區捕集效率擴散
外文關鍵詞:Collection deviceCapture envelopeCapture efficiencyDiffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣罩與採樣頭之類裝置均藉由吸取空氣而收集空氣中的物質,在側風與吸氣共同作用下,捕集裝置前方會形成一捕集區,捕集區內的流線均會被導至吸氣開口,因此位於捕集區內的物質較有可能隨著流線進入捕集裝置而被捕集。但空氣中物質會藉由擴散等散佈作用跨越捕集區邊界,於是捕集區邊界形成一帶狀的「過渡區」,在此區域內捕集裝置對物質的捕集效率隨物質發生源的位置而異,捕集效率由0%(距捕集裝置較遠處),逐漸增加至100%(距捕集裝置較近處),因此只要針對此區域深入探討,即可獲得捕集裝置捕集效率對物質發生源位置的關係。
本研究以理論計算模擬方式探討此區域的大小,針對捕集裝置中軸位置的粒子發生源進行探討。主要方式係以位於無限平面上圓形開口所產生的理想流場(無黏性、無紊流)模擬捕集裝置吸氣氣流,再加上橫向側風產生流場,計算流場中粒子的軌跡,並以亂數法模擬粒子擴散,評估粒子可被圓形開口捕集的機率而得在流場中給定點的收集效率,粒子隨時間散佈的程度隨給定的擴散係數 D 而定。
經整理得七千餘次不同參數組合下的捕集效率計算結果,經過三個層次的迴歸:(1) 由捕集效率與發生源位置關係得到過渡區厚度;(2) 發現捕集區厚度與擴散係數的平方根成正比;(3) 利用因次分析與多變量迴歸得到其他參數(如側風風速、吸氣開口風速比、捕集裝置開口直徑等)的效應,最後獲得一可用以估算捕集效率的經驗公式。此經驗公式的迴歸範圍涵蓋捕集開口直徑 d = 0.07~0.2、捕集開口風速 Vf = 0.2~15,側風風速 Vc = 0.25~1(Vf/Vc = 0.2 ~ 30)與 D = 10-5 ~10-3(使用一致的單位),迴歸相關係數 R2 均達到 0.999 以上。在迴歸過程中同時發現,達到 50% 捕集效率的發生源位置 z50% 不會隨擴散係數改變。經更進一步驗證,發現所得經驗公式在適當條件下(z50% 遠大於過渡區厚度)可使用於更大的範圍: d = 0.05 ~ 0.5,Vc = 0.1 ~ 1,Vf/Vc = 0.1 ~ 30,D = 10-2 ~ 10-6。
A collection device, such as an exterior hood or a sampling probe, collects air-borne materials by extracting air from an open air. Under the combined effects of the cross-draft, the extraction and the diffusion, a “transition region” is formed in front of the extracting opening. The collection efficiency of the device to the air-borne materials varies in this region.
This study evaluated the size of the transition region by using computational simulation. A circular opening on an infinite plane was modeled as a collector. A potential flow field (without viscosity and turbulence) was generated by the opening and superposed by a uniform cross-draft. The particle source is assumed to be located on the central axis of the opening. The particle trajectories were calculated by tracing the streamline. The dispersion due to diffusion was simulated by random numbers. The collection efficiency then was determined by the probability of the particles being collected at a given releasing position in the flow field. The dispersion of the particle is determined by the given diffusion coefficient D.
An empirical formula was established by compiling a large amount of computational results. More than 7,000 collection efficiency computations were performed under different combination of parameters. The regression was performed in 3 levels. (1) the thickness of the transition region ?? is determined from the collection efficiency vs source location z; (2) was found to be portortional to the square root of diffusion coefficient; (3) the effect of the other parameters were determined by dimensional analysis and multiple-variable regression. The range of the regression is d (opening diameter of the collection device) = 0.07 ~ 2, Vf (flow velocity at the opening) = 0.2 ~ 15, Vf (velocity of the cross draft) = 0.25 ~ 1 (Vf/Vc = 0.2 ~ 30), and D = 10-5 ~ 10-3 (all the units are consistent). It was also found that the location where 50% collection efficiency is achieved, z50%, is not affected by the diffusion coefficient. In a further verification, the present study also found, under certain constraint, the empirical formula can be used in a more extensive range: d = 0.05 ~ 0.5, Vc = 0.1 ~ 1, Vf/Vc = 0.1 ~ 30, and D = 10-2 ~ 10-6.
致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 vii
表目錄 viii
第一章 前言 1
1-1 捕集區 1
1-2 擴散與散佈現象 3
第二章 研究方法 13
2-1 吸氣風速 13
2-2 擴散模擬 16
2-3 粒子軌跡計算 20
2-4 捕集效率 22
2-5 常態分配累積函數 23
第三章 數據分析方法 24
3-1 捕集效率對發生源中軸位置的關係 24
3-2 擴散係數對過渡區厚度的關係 27
3-3 因次分析 31
第四章 結果與討論 33
4-1 迴歸結果 33
4-2 經驗公式適用範圍驗證 38
4-3 粒子撞擊突緣壁面的效應 41
4-4 應用於紊流散佈的可行性 43
4-5 微粒或氣體擴散效應的重要性 45
4-5 研究限制 46
第五章 結論 47
參考文獻 48
符號說明 51

圖目錄
圖 1 氣罩吸氣在側風中所形成的捕集區...................................................... 2
圖 2 d、z0、Vf 與 Vc 示意圖......................................................................... 3
圖 3 氣體分子與氣膠微粒經其他氣體分子碰撞的運動軌跡投影:(a) 為氣
體分子的軌跡;(b) 為 0.1 μm 微粒[1] ............................................... 5
圖 4 平均自由行徑 l 的定義....................................................................... 5
圖 5 在穩定流場中一特定點濃度的擾動變化.............................................. 8
圖 6 Flynn 於風洞中對圓形開口氣罩測試所得捕集效率 h 與 SF6 於中軸
上釋放位置的關係[3] .......................................................................... 12
圖 7 匯流點示意圖...................................................................................... 14
圖 8 將吸氣開口視為匯流點均勻分佈的區域............................................ 15
圖 9 碎形積分法對圓形開口面的切割方式[34].......................................... 16
圖 10 一維擴散趨勢...................................................................................... 17
圖 11 使用亂數模擬粒子於空間中的擴散.................................................... 18
圖 12 使用醉漢行走模式逐時模擬粒子的擴散(不同標記表示在 t = 0 時為
不同的粒子) ...................................................................................... 19
圖 13 使用醉漢行走模式所得 t = 0.2 時的擴散粒子分佈.......................... 19
圖 14 於擴散效應、吸氣與側風同時作用下,於流場中一特定點(x = y = 0,
z = 0.15)釋放粒子所得各粒子的軌跡(各參數單位成一致關係) ...... 21
圖 15 開口前方過渡區捕集效率分佈圖........................................................ 22
圖 16 不同發生源位置 z 的捕集效率 h 變化趨勢.................................... 24
圖 17 發生源位置 z 隨脫逃分率 1 - h percentile 尺度變化的趨勢............ 25
圖 18 不同的擴散係數 D 下捕集效率 h 對發生源位置 z 的關係........... 27
圖 19 標準差 s 對散佈係數 D 的關係...................................................... 28
圖 20 截距 μ 對擴散係數 D 的關係.......................................................... 29
圖 21 標準差 s 對數值對擴散係數 D 對數值的關係及迴歸結果............ 30
圖 22 迴歸的層次系統................................................................................... 33
圖 23 以經驗方程式(56)所得無因次 s 值與第二層次所得無因次 s 值的
對照...................................................................................................... 37
圖 24 z50%/d 與經驗公式(55) 的比較...................................................... 38
圖 25 過渡區厚度相對誤差 e1 對 * *
50% z /s 的關係................................... 40
圖 26 過渡區厚度絕對誤差 e2 對 * *
50% z /s 的關係................................... 41
圖 27 粒子與突緣壁面碰撞處裡方式對捕集效率的影響............................. 42
圖 28 根據 Flynn 實驗所迴歸得 z50%/d(μ/d)與經驗公式 (55) 的比較. 44
圖 29 Flynn 實驗所得捕集效率與本研究迴歸方式比較............................. 45

表目錄
表 1 各種不同粒徑微粒在 1 大氣壓 20℃ 下空氣中的擴散係數[12] ....... 4
表 2 各種不同粒徑微粒在 1 大氣壓 20℃ 下空氣中的擴散係數[15] ....... 7
表 3 Flynn (1986) 對氣罩捕集效率的實驗結果[3]..................................... 10
表 4 第二層次迴歸所得的結果................................................................... 34
表 5 根據 Flynn 的實驗所迴歸的結果...................................................... 43
[1] Hinds, WC. Aerosol Technology. 2nd Ed. John Wiley & Sons; 1999.
[2] Tsai PJ, Vincent JH, Mark D, Maldonado G.. Impaction model for the aspiration efficiencies of aerosol samplers in moving air under orientation-averaged conditions. Aerosol Sci. and Tech. 1995; 222: 71-286.
[3] Flynn MR, Ellenbecker MJ. Capture efficiency of flanged circular local exhaust hoods. Ann. Occup. Hyg. 1986; 30:497-513.
[4] Flynn MR, Ellenbecker M J. Empirical validation of theoretical velocity fields into flanged circular hoods. Am. Ind. Hyg. Assoc. J. 1987, 48, 380-389.
[5] 陳友剛,葉文裕,陳春萬:圓形開口凸緣氣罩控制風速的理論探討,勞工安全衛生季刊,第五卷第四期,1997;29-43。
[6] Huang RF, Chen JL, Chen YK, Yeh WY, Chen CW and Chen CC. The capture envelope of a flanged circular hood in cross drafts. AIHAJ. 2001; 62:199-207.
[7] Huang RF, Sir SY, Chen YK, Yeh WY, Chen CW, Chen CC. Capture envelope of rectangular hoods in cross drafts. AIHAJ 2001; 62: 563-572.
[8] Chen YK, Huang RF, Chen JL, Chen, CW. Capture envelope of a hood opening under crosswind condition-a wind tunnel experiment. 勞工安全衛生季刊,第九卷第二期,2001;211-223。
[9] Chen YK, Huang RF, Chen CW. Capture Envelope of a Hood Opening Under Crosswind Condition-A Numerical Approach. 勞工安全衛生季刊,第九卷第三期,2001;225-239。
[10] Armbruster L, Zobel G. Theoretical and experimental studies for determing the aerosol sampling efficiency of annular slot probes. J. Aerosol Sci. 1985; 16: 335-341.
[11] Cussler EL. Diffusion: mass transfer in fluid systems. 2nd Ed. Cambridge University Press; 1997.
[12] 勞研所:氣膠原理與應用,勞工安全衛生技術叢書 001,1995;IOSH83-T-001,勞工安全衛生研究所。
[13] Reist PC. Aerosol Science and Technology. 2nd Ed.; 1992, McGraw-Hill.
[14] Davis CN. Proc. Phys. Soc. 1945; 57.
[15] Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena. 1960; John Wiley & Sons.
[16] Dalla Valle JM. Exhaust Hoods. Industrial Press, New York; 1945.
[17] Garrison RP. Centerline Velocity Gradients for Plain and Flanged Local Exhaust Inlets. Am. Ind. Hyg. Assoc. J. 1981; 42: 739-746.
[18] Flynn MR, Ellenbecker MJ. The potential flow solution for airflow into a flanged circular hood. Am. Ind. Assoc. J. 1985; 46: 318-322.
[19] Flynn MR, Miller CT. Comparison of models of flow through flanged and plain circular hoods. Ann. Occup. Hyg. 1988; 32: 373-384.
[20] Conroy LM, Ellenbecker MJ, Flynn MR. Prediction and measurement of velocity into flanged slot hoods. Am. Ind. Assoc. J. 1988; 49: 226-234.
[21] Flynn MR, Miller CT. The boundary integral equation method (BIEM) for modeling local exhaust hood flow field. Am. Ind. Assoc. J. 1989; 50: 281-288.
[22] Alenius S, Jansson A. Air Flow and Particle transport into Local Exhaust Hoods – A Verified Computer Model. Solna, Sweden: National Institute of Occupational Health; 1989.
[23] Kulmala I. Numerical calculation of airflow fields generated by exhausted openings. Ann. Occup. Hyg. 1993; 37: 451-467.
[24] Yuan, S. W. Foundation of Fluid Mechanics. 1967; Prentice-Hall, NJ.
[25] Schlichting H. Boundary Layer Theory. 1960; McGraw-Hill.
[26] Drkal F. Str?卌ungsverh ?纜tnisse bei runden Saug ?仜fnungen mit Flansch. Z. Heiz. L?伭t. Klim. Haus. 1970; 21: 271-273.
[27] Heinsohn, RJ. Industrial Ventilation:Engineering Principles. 1991; John Wiley & Sons.
[28] Press HP, Flannery BP, Teukolsky SA, Vetterling, WT. Numerical recipes in C: the art of scientific computing. 2nd Ed. Cambridge, UK; 1999.
[29] Carslaw HS, Jaeger JC. Conduction of Heat in Solids. 2nd ed. 1959; London: Oxford.
[30] Watson GN. A Treatise on the Theory of Bessel Functions. 2nd ed. 1058; Cambridge: Cambridge, UK.
[31] Gradshteyen LS, Ryzhik IM. Table of Integrals, Series, and Products. 6th ed. 2000; Academic Press.
[32] Borwein JM, Borwein PB. Pi and the AGM – A Study in Analytical Number Theory and Computational Complexity. 1987; John Wiley & Sons.
[33] Tyaglo IG, Shepelev IA. Dvizhenie vozdushnogo potoha k vytyazhnomu otverstiyu (Airflow near an Exhaust Opening, in Russian). Vodosnabzh Sanit. Tekh., 1970; 5: 24-25.
[34] Chen YK, Chung KC, Yeh WY, Chen CW. The Potential Flow Field Generated by the Flanged Hood Openings of Different Shapes. 勞工安全衛生季刊,第六卷第三期,1998。
[35] Hoel PG, Port SC, Stone CJ.. Introduction to Probability Theory. 1971; Houghton Mifflin.
[36] Walpole RE, Raymond HM. Probability and Statistics for Engineers and Scientists. 5nd Ed. 1993; MacMillian.
[37] Svobodny T. Mathematical Modeling for Industry and Engineering. 1998; Prentice-Hall.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top