跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王隆碩
研究生(外文):Lung-Shuo Wang
論文名稱:葛根明膠神經導管對神經再生之影響評估
論文名稱(外文):Evaluation of Gelatin Nerve Conduits Containing Radix Puerariae on Nerve Regeneration
指導教授:陳必誠陳必誠引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:中國醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:神經導管葛根周邊神經再生
外文關鍵詞:Radix Puerariaenerve conduitperipheral nerve regeneration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究係以明膠來製備可降解之神經導管,將其植入雌性Spraque-Dawley大鼠截斷坐骨神經10 mm之斷面,藉以評估導管對神經再生之影響。實驗所採用之對照組為未加中藥之明膠神經導管,實驗組為添加葛根之明膠神經導管。導管採用戊二醛進行化學交聯。植管後,將大鼠飼養八週後收成,再以肉眼觀察神經再生情形及導管降解狀況,並以電生理檢測及神經切片組織學分析,來評估神經再生及功能恢復的狀況。我們的研究結果顯示,在肉眼觀察上,兩組皆取得良好神經再生結果,導管降解程度亦皆良好。在電生理評估上,實驗組比對照組的神經功能良好,且已達到統計上的顯著差異。在組織學鏡檢觀察上,實驗組的再生神經組織顯得較為緻密,對照組組織則較為疏鬆。因此我們的結論是,添加葛根的神經導管比未添加葛根之明膠導管,對神經的再生及功能恢復具有助益。


We evaluated a biodegradable gelatin nerve conduit containing Radix Puerariae on peripheral nerve regeneration. In the experimental group, the Radix Puerariae-contained gelatin conduits were used to bridge a 10 mm sciatic nerve defect in 10 Spraque-Dawley rats. Gelatin conduits without Radix Puerariae added were considered as the controls. Histological and electrophysiological techniques were used to evaluate the nerve regeneration. At the conclusion of eight weeks, all rats in both groups acquired successful regeneration across gaps. However, the experimental group had a significantly better performance at peak latency and nerve conduction velocity than the control group. In addition, the experimental group revealed more condensed regenerated axons than the control group. These results indicated that Radix Puerariae could be a beneficial factor for nerve regeneration.

目 錄

第一章 前言 1
第二章 文獻回顧 4
2.1周邊神經損傷 4
  2.1.1 周邊神經損傷的分類 4
   2.1.1.1 Seddon分類法 4
   2.1.1.2 Sunderland分類法 5
  2.1.2 周邊神經損傷的修補技術 5
   2.1.2.1斷端縫合術(end-to-end suturing techniques)5
   2.1.2.2組織纖維黏合法(Tissue fibrin adhesive techniques) 6
   2.1.2.3雷射神經癒合術(Laser nerve repair techniques) 6
   2.1.2.4神經移植手術(Nerve grafting operation) 6
   2.1.2.5神經導管接合術(Nerve bridging techniques) 7
 2.2 神經與中醫 7
  2.2.1 神經系統的中醫觀點 7
   2.2.1.1神經的中西醫學發展史 7
   2.2.1.2 腦髓與神經的關係 9
   2.2.1.3 臟腑與神經的關係 9
   2.2.1.4 經絡與神經的關係 10
2.2.2 周邊神經損傷的中醫觀點 13
   2.2.2.1 周邊神經損傷的中醫證型 13
   2.2.2.2 周邊神經損傷的中醫治療 13
    2.2.2.2.1 中藥治療 13
    2.2.2.2.2 針灸治療 14
2.3 製備神經導管的常用生醫材料 14
  2.3.1 生醫材料的種類 14
  2.3.2 神經導管材料的選擇條件 15
  2.3.3神經導管材料各論 16
   2.3.3.1膠原蛋白(collagen) 16
   2.3.3.2 明膠(Gelatin) 17
   2.3.3.3甲殼素(chitin)與幾丁聚醣(chitosan) 18
2.4 交聯與交聯劑 19
  2.4.1 交聯的作用 19
  2.4.2 交聯的方法 20
  2.4.3 化學交聯劑的種類 20
  2.4.4 交聯方法的比較 21
2.5 藥物控制釋放在神經導管上的應用 22
  2.5.1 控制釋放的基本概念 22
  2.5.2 葛根 23
   2.5.2.1 葛根簡介 23
   2.5.2.2 葛根的神經相關文獻探討 23
第三章 材料與方法 25
3.1 製備葛根濃縮粉末 25
  3.1.1 目的 25
  3.1.2 主要材料 25
  3.1.3 製備方法 25
3.2 製備神經導管 26
  3.2.1 目的 26
  3.2.2 主要材料 26
  3.2.3 製備方法 27
   3.2.3.1 製備對照組神經導管 27
   3.2.3.2 製備實驗組神經導管 28
3.3 神經導管接合術 29
  3.3.1 目的 29
  3.3.2 主要材料 29
  3.3.3 手術方法 30
3.4觀察大鼠植管後0~8週狀態 31
3.5 觀察神經再生情形及導管降解狀態 31
3.6 神經電生理檢測實驗 32
  3.6.1 目的 32
  3.6.2 實驗方法 32
3.7 再生神經組織學切片分析 32
  3.7.1 目的 32
  3.7.2 實驗方法 32
第四章 結果 34
4.1葛根濃縮粉末製藥結果 34
4.2神經導管製備結果 34
4.3大鼠植管後0~8週狀態觀察結果 36
  4.3.1一般性觀察結果 36
  4.3.2 體重變化與厭食 38
  4.3.3 自殘 39
4.4觀察神經再生及導管降解狀態結果 41
  4.4.1 一般性觀察結果 41
  4.4.2 神經導管降解程度觀察結果 44
  4.4.3 神經再生觀察結果 45
4.5神經電生理檢測結果 49
  4.5.1 潛期 49
  4.5.2 波期 50
  4.5.3 振幅 51
  4.5.4 波下面積 52
  4.5.5 神經傳導速度 53
4.6再生神經組織學切片評估結果 54
  4.6.1光學顯微鏡40倍鏡檢結果 54
  4.6.2光學顯微鏡100倍鏡檢結果 56
  4.6.3光學顯微鏡400倍鏡檢結果 60
  4.6.4光學顯微鏡1000倍鏡檢結果 63
第五章 討論 66
5.1 藥物 66
5.2 神經導管的製備 67
5.3 大鼠植管後0~8週的狀態觀察 68
5.4 神經電生理評估 69
5.5 再生神經組織學切片評估 70
第六章 結論 72
參考文獻 73
英文摘要 89
作者簡歷 90
謝辭 91


圖 目 錄

圖4.1 葛根濃縮粉末 34
圖4.2 對照組神經導管 35
圖4.3 實驗組神經導管 35
圖4.4 神經導管之比較 36
圖4.5 大鼠植管後0~8週體重變化比較圖 38
圖4.6 大鼠自殘狀態 39
圖4.7 對照組神經再生及神經導管降解圖 42
圖4.8 實驗組神經再生及神經導管降解圖 43
圖4.9 神經導管降解程度比較圖 45
圖4.10 對照組A1大鼠只有微細再生神經出現 46
圖4.11 對照組A8大鼠可觀察到粗大的再生神經 47
圖4.12 實驗組B3大鼠可觀察到粗大的再生神經 47
圖4.13 對照組A4大鼠之分離坐骨神經 48
圖4.14 實驗組B3大鼠之分離坐骨神經 48
圖4.15 潛期比較圖 49
圖4.16 波期比較圖 50
圖4.17 振幅比較圖 51
圖4.18 波下面積比較圖 52
圖4.19 神經傳導速率比較圖 53
圖4.20 實驗組神經切片(縱切面, 40倍) 55
圖4.21 對照組神經切片(橫切面, 40倍) 55
圖4.22 實驗組神經切片(橫切面, 40倍) 56
圖4.23 實驗組神經切片(縱切面, 100倍) 57
圖4.24 對照組神經切片(橫切面, 100倍) 58
圖4.25 實驗組神經切片(橫切面, 100倍) 58
圖4.26 對照組神經切片(斜切面, 100倍) 59
圖4.27 實驗組神經切片(斜切面, 100倍) 59
圖4.28 實驗組神經切片(縱切面, 400倍) 60
圖4.29 對照組神經切片(橫切面, 400倍) 61
圖4.30 實驗組神經切片(橫切面, 400倍) 62
圖4.31 對照組神經切片(橫切面, 1000倍). 64
圖4.32 實驗組神經切片(橫切面, 1000倍) 65
圖5.1 神經導管內神經再生機制圖 68
圖5.2 動作電位比較圖 71


表 目 錄

表4.1 大鼠植管後0~8週狀態觀察結果 37
表4.2 大鼠植管後厭食數目比較表 39
表4.3 大鼠植管後自殘數目比較表 40
表4.4 神經導管降解程度分級標準 44
表4.5 神經導管降解程度分級結果 44
表4.6 肉眼觀察神經再生結果比較表 46
表4.7 潛期統計結果表 50
表4.8 波期統計結果表 51
表4.9 振幅統計結果表 52
表4.10 波下面積統計結果表 53
表4.11 神經傳導速度統計結果表 54


1 National Institutes of Health (NIH). The working definition of bioengineering. July 24, 1997
2 Clemson University Advisory Board for Biomaterials “Definition of the word biomaterial”. The 6th Annual International Biomaterial Symposium. April 20-24, 1974
3 陳百萬:生物醫學工程學. 1st ed. 北京科學出版社. 1997
4 Tang CM, Lin FT, Chang CJ, Chen CY, Hsu SH. Evaluation of chitosan-polyvinyl alcohol guidance conduit for peripheral nerve regeneration. In: Anonymous台灣生物醫學工程研討會. 2002
5 Nyilas E, Chiu TH, Sidman RL, Henry EW, Brushart TM, Dikkes P, Madison R. Peripheral nerve repair with bioabsorbable prosthesis. Trans Am Soc Artif Intern Organs. 1993;29:307-13
6 許富銀、鄭明鎮、王盈錦:膠原蛋白在醫學上的應用. 生物產業. 1998;9:21-6
7 Mackinnon SE, Hudson AR, Bojanowski V, Hunter DA, Maraghi E. Peripheral nerve injection injury with purified bovine collagen—an experimental model in the rat. Ann Plast Surg. 1985;14:428-36
8 Malette WG. Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In: Muzzarelli R ed. Chitin in nature and technology. New York. 1985;435
9 匡勇、侯春林、苟三懷:幾丁質及幾丁糖與雪旺氏細胞相容性的實驗研究. 中國修復重建外科雜誌. 1998;12:90-4
10 Dillon GP, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed. 1998;9:1049-69
11 Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials. 2002;23:4827-32
12 Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Materials Chemistry and Physics. 2004;83:204-8
13 章如瑛:以綠梔子素交聯明膠製造降解性神經導管之研究評估. 中國醫藥大學中國醫學研究所 碩士論文. 2004
14 葉宗樹:綠梔子素交聯明膠充填矽膠管於修復截斷大鼠坐骨神經再生影響之評估. 中國醫藥大學中國醫學研究所 碩士論文. 2002
15 Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 2005;26:3911-18
16 Tu R, Lu C, Shen S, Wang E, Hata C, Lin D, Quijano RC. A preliminary study of the reaction mechanism of collagen fixation with a polyepoxy fixative. Artif Organs. 1992; 16:533-44
17 Sung HW, Shen SH, Tu R, Lin D, Hata C, Noishiki Y, Tomizawa Y, Quijano RC. Comparison of cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. ASAIO J. 1993; 39:532-36
18 Tu R, Lu CL, Thyagarajan K, Wang E, Nguyen H, Shen S, Hata C, Quijano RC. Kinetic study of collagen with polyepoxy fixatives. J Biomed Mater Res. 1993;27:3-9
19 Esposito E, Cortesi R, Nastruzzi C. Gelatin microspheres: Influence of preparation parameters and thermal treatment on chemicophysical and biopharmaceutical properties. Biomaterials. 1996; 17:2009-20
20 Illum L, Davis SS. Polymers in controlled drug delivery. Wright Bristol. 1987;73-86
21 梁晃千:以天然交聯劑Genipin交聯明膠的藥物制放微粒載體體內與體外性質評估. 中央大學化學工程研究所 碩士論文. 2000
22 Murayama Y, Satoh S, Oka T, Imanishi J, Noishiki Y. Reduction of the antigenicity and immunogenicity of xenografts by a new cross-linking reagent. Trans Am Soc Artif Intern Organ. 1988;34:546-9
23 Nimni ME, Cheung D, Strates B, Odama MK, Sheikh K. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. Nimni, M.E.ed Collagen, Biotechnology. Florida, CRC Press, Inc. 1988;3:1-37
24 Koo HJ, Song YS, Kim HJ, Lee YH, Hong SM, Kim SJ, Kim BC, Changbae J, Lim CJ, Park EH. Anti-inflammatory effects of genipin, a active principle of gardenia. Eur J Pharmacol. 2004;495:201-8
25 Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005; 256- 274
26 Goran Lundborg: Nerve injury and repair. 2nd ed. Elsevier Churchill livingstone. 2004
27 Liu BS, Yao CH, Hsu SH, Chen YS, Kao ST. A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration. J Biomater Appl. 2004;19: 21-34
28 Jiang Bo, Bao YM, Li ZG, Cheng L, An LJ. Protection by puerarin against MPP+-induced neurotoxicity in PC12 cells mediated by inhibiting mitochondrial dysfunction and caspase-3-like activation. Neurosci Res. 2005;53:183-188
29 Sawatsri S, Yamkunthong W, Sidell N. Pueraria Mirifica initiative promotes the cellular mechanism of neuronal survival in neuron human neuroblastoma cells. Poster Session P3: Molecular Mechanisms of Neurodegeneration-Apoptosis S414
30 Seddon H. Three types of nerve injury. brain. 1943;66:237-88.
31 Seddon H. Surgical disorders of the peripheral nerves. 1st ed. Edinburgh: Churchill livingstone; 1972.
32 Seddon H. Peripheral nerve injuries. Medical research Council Special Report Series 282. London: Her Mafesty''s Stationery Office; 1954
33 Sunderland S. Nerves and nerve injuries. 2nd ed. Edinburgh: Churchill livingstone; 1978.
34 Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74:491-516.
35 Chen YS. Development of a multiple-lumen nerve cuff utilizing growth stimulant patterns for controlled regeneration. Iowa State University, PHD dissertation 1998.
36 Terris DJ, Fee WE. Current issues in nerve repair. Arch Otolaryngol Head Neck Surg. 1993;119(7):725-31
37 Millesi H. Interfascicular nerve grafting. Orthop Clin North Am. 1981;12(2):287-301
38 Cabaud HE, Rodkey WG, McCarroll HR. Peripheral nerve injuries: studies in higher nonhuman primates. J Hand Surg Amer. 1980;5(3):201-6
39 Narakas A. The use of fibrin glue in repair of peripheral nerves. Orthop Clin North Am. 1988;19(1):187-99
40 Nishihira S, McCaffrey TV. Repair of motor nerve defects: comparison of suture and fibrin adhesive techniques. Otolaryngol Head Neck Surg. 1989;100(1):17-21
41 Maragh H, Hawn RS, Gould JD, Terzis JK. Is laser nerve repair comparable to microsuture coaptation? J Reconstr Microsurg. 1988;4(3):189-95
42 Bailes JE, Cozzens I, Hudson JW, Kline AR, Ciric DG, Gianaris P, Bernstein LP, Hunter D. Laser-assisted nerve repair in primates. J Neurosurg. 1989;71(2):266-72
43 Doolabh VB, Hertl MC, Mackinnon SE. The role of conduits in nerve repair: a review. Rev Neurosci. 1996;7(1):47-84
44 Kiyotani T, Teramachi M, Takimoto Y, Nakamura T, Shimizu Y, Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 1996;740(1-2);66-74
45 Grace J, Daniel S, Stevens T, Shankar KK, Walker Z, Byrne EJ, Butler S, Wilkinson D, Woolford J, Waite J, McKeith IG. Long-term use of rivastigmine in patients with dementia with Lewy bodies: an open-label trial. Int Psychogeriatr. 2001;13(2):199-205
46 韓秀珍、朱兵:脈‧經脈‧經絡—細筋‧系‧神經:經絡概念的內涵演化與神經的聯繫. 中國針灸. 2002;22(11):779-82
47 利瑪竇:西國記法. 原本篇第一. 臺灣學生書局. 1982
48 範行准:明季傳入之西洋醫學. 卷一. 中華醫史學會. 1943
49 張錫純:醫學衷中參西錄. 河北科學技術出版社
50 邱根全、王銳、劉昳、何群英、孫喜才:中醫對腦的重新認識. 陜西中醫. 1999;20(1):22-3
51 謝慶良:中國醫藥大學學士後中醫學系內經授課講義---中樞神經系統的五臟論.
52 勞紹賢:脾虛證候的現代研究概況. 新中醫. 1985;(9):49.
53 張萬岱:加強脾虛證本質的研究. 中國中西醫結合脾胃雜誌. 1996;4(1):3.
54 鄺安堃:陽虛(甲狀腺功能減退)和陰虛(甲狀腺功能亢進)病人血漿環核苷酸的對比. 中醫雜誌. 1979;7:21
55 陳奇:CAMP CGMP與中醫陰陽學說. 江西中醫藥. 1980;2:10
56 蔣大宗:對經絡實質的一種猜想及開展研究的建議. 中國醫療器械雜誌. 2002;26(4):235-7
57 張友時、李瑞午:經絡實質探討:觸發點-細胞通訊-神經系統-細胞通訊假說. 科技導報. 1999;11:13-5
58 宋繼美:肥大細胞與經絡現象. 遼寧中醫雜誌. 1977; 4(2):59-61
59 李定宗、李秀章:經穴皮部挑治與深刺的fMRI對比研究. 中國針灸. 2000:20(8);533
60 Davydov AS , Kislukha NJ. Solitary excitations in one-dimensional molecul chain. Phys Stat Solb. 1973; 59:465-70
61 羅玉輝、龐小峰、劉盛綱:生物能量傳遞新模型中的孤立子特性研究. 原子與分子物理學報. 2001;18(3):278-80
62 葉建紅:非線性系統理論與經絡能量轉移. 西南國防醫藥. 2002; 12(2):109-10
63 胡翔龍、程莘農:金針之魂——經絡的研究. 湖南科學技術出版社, 1995
64 郭明霞:經絡的物質基礎、循經感傳及其作用機制研究與進展. 中國臨床康復. 2004;8(25):5353-5
65 費倫:經絡物質基礎及其功能性特徵的實驗探索和研究展望. 科學通報. 1998 ,43(6):658 -72
66 郭義、張艷軍、張克蘭:鈣離子是經絡活動的關鍵因素之一. 中國中醫基礎醫學雜誌. 1988;4(7):49
67 商成、樓宇偉、萬三:生物電化學振盪:一項可能對探索中醫機理有重要意義的研究. 科技導報. 1991;3:37-40
68 張燕華:經絡-神經-內分泌-免疫網絡. 華西醫學. 1998;13(3):316-7
69 趙晏、孫啟新、張世紅、賈軍、曹東元、郭媛:多種神經遞質參與外周跨節段資訊傳遞. 針刺研究. 2002; 27(4):298-302
70 張育文:針刺曲池、臂臑穴對人中、承漿穴區兒茶酚胺陽性神經的影響. 同濟醫科大學學報. 1998; 1:27
71 劉裏遠:針刺促進經線皮膚釋放兒茶酚胺的實驗研究. 上海針灸雜誌. 1997; 4:32
72 趙晏:神經激肽A與經絡資訊的傳遞. 西安醫科大學學報. 1997; 2:149
73 陳道亮、萬隆、謝建珍:家兔急性低氧耐受力的測定及在經絡研究中的初步應用. 福建中醫學院學報. 1999; 3:15
74 王戰朝:名老中醫李金明診療周圍神經損傷經驗. 中國中醫骨傷科雜誌. 2000;8(1):62-3
75 石關桐、石印玉、李義凱:補陽還五湯對神經損傷修復的實驗研究. 中國中醫骨傷科雜誌, 1997;5 (5): 1
76 高飛、王明喜、李新沁:足印測定法評價補陽還五湯對周圍神經再生的作用. 中醫正骨, 1997;9 (2): 20
77 陳德松:五種藥物對小鼠周圍神經再生影響的實驗研究. 手外科雜誌, 1989;5:159
78 聶小圃:周圍神經損傷從血痹論治. 湖北中醫雜誌, 1997;19(6): 32
79 孫忠人、梅晨健、宋春華:針刺對大鼠坐骨神經損傷模型組織形態學改變影響的實驗研究. 中國中醫藥科技. 1998;5 (1): 1
80 馬健、唐啟華、郭容經:電針、推拿和紅外線理療治療周圍神經損傷的比較實驗研究:對損傷神經影響的組織學、細胞學研究. 中國運動醫學雜誌, 1997;16 (1): 22
81 邵水金、單寶枝、余安勝:電針對大鼠坐骨神經損傷後軸突轉運的影響. 針刺研究, 1998;23 (1): 66
82 何建宜:不同頻率電針刺激經矽膠管修護之截斷大鼠坐骨神經再生影響. 中國醫藥大學中國醫學研究所碩士論文
83 Gerburg K, Felix S, Gerald W, Hisham F. Bio-compatibility of type I-III collagen matrix for peripheral nerve reconstruction. Biomaterials. 2003;24:2779-87
84 Midha R, Shoichet MS, Dalton PD, Cao X, Munro CA, Noble J, Wong MK. Tissue engineered alternatives to nerve transplantation for repair of peripheral nervous system injuries. Transplant Proc. 2001;33:612-5
85 Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol. 1998;154:315-29
86 McDaniel Jr. HE. Tissue engineered collagen nerve guidance channels. In: Stark GB, Horch R, Tanoszos E, editors. Biological matrices and tissue reconstruction. Heidelberg: Springer. 1998;237-42
87 Yoshii S, Oka M. Collagen filaments as a scaffold for nerve regeneration. J Biomed Mater Res. 2001;5:400-5
88 Sieminski AL, GoochKJ. Biomaterial-microvasculature interactions. Biomaterials. 2000;21:2233-41
89 Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215-31
90 Sieminski AL, Gooch KJ. Biomaterial–microvasculature interactions. Biomaterials. 2000;21:2233-41
91 Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215-31
92 Chi H, Horie H, Hikawa N, Takenaka T. Isolation and agerelated characterization of mouse Schwann cells from dorsal root ganglion explants in type I collagen gels. J Neurosci Res. 1993; 35:183-7
93 Terzis JK, Sun DD, Thanos PK. History and basic science review: past, present, and future of nerve repair. J Reconstr Microsurg. 1997;13:215-25
94 Fansa H, Keilhoff G, Wolf G, Schneider W. Tissue engineering of peripheral nerves: a comparison of venous and acellular muscle grafts with cultured Schwann cells. Plast Reconstr Surg. 2001;107:485-94
95 Fansa H, Keilhoff G, Forster G, Seidel B, Wolf G, Schneider W. Acellular muscle with Schwann-cell implantation: an alternative biologic nerve conduit. J Reconstr Microsurg. 1999;15:531-7
96 Fansa H, Dodic T, Wolf G, Schneider W, Keilhoff G. Tissue engineering of peripheral nerves—epineurial grafts with application of cultured Schwann cells. Microsurgery. 2003;23:72-7
97 Felix S, Hisham F, Gerald W, Michael R, Gerburg K. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration. Biomaterials. 2005;26:3083-91
98 Tetsuya K, Masayoshi T, Yukinobu T, Tatsuo N. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Research. 1996;740:66-74
99 Satoru Y, Masanori O, Mitsuhiro S, Ataru T, Masao A. 30 mm regeneration of rat sciatic nerve along collagen filaments. Brain Research. 2002;949:202-8
100 Kazuya M, Katsunori O, Tetsuya K, Takashi S, Hiroki U, Tatsuo N, Katsuaki E, Yasuhiko S. Peripheral nerve regeneration across an 80 mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Research. 2000;868:315-28
101 Asghar A, Henrickson RL. Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res. 1982;28:231-372
102 Farrugia CA, Farrugia IV, Groves MJ. Comparison of the molecular weight distribution of gelatin fractions by sizeexclusion chromatography and light scattering. Pharm Pharmacol Commun. 1998;4:559-62
103 Saddler JM, Horsey PJ. The new generation gelatins. A review of their history, manufacture and properties. Anesthesiology. 1987;42:998-1004
104 Courts A. The N-terminal amino acid residues of gelatin: 2. Thermal degradation. Biochem J. 1954;58:74-9
105 Simon Y, Mark W, Yasuhiko T, Antonios GM. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Controll Release. 2005;109:256-74
106 David O, Chunlin Y, Michael B, Robert C, Scott L, Julio B, David C, Maritta P, Eija-Riitta H, Marko J, James P. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev. 2003;55:1547-67
107 Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials. 2000;21:489-99
108 Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26:3941-51
109 Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci. Polym Ed. 2001;12:77-88
110 Kuijpers AJ, PB van Wachem, MJ van Luyn, Plantinga JA, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J. In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron. J Biomed Mater Res. 2000;51:136-45
111 Yao CH, Liu BS, Hsu SH, Chen YS, Tsai CC. Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res. 2004;69A:709-17
112 Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J. Cross-linking and characterization of gelatin matrices for biomedical applications. J Biomater Sci. Polym Ed. 2000;11:225-43
113 Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21: 2155-61
114 Ouattara B, Simard RE, Piette G, Begin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Microbiology. 2000;62:139- 48
115 Kofuji K, Ito T, Murata Y, Kawashima S. The controlled release of a drug from biodegradable chitosan gel beads. Chem Pharm Bull. 2000;48: 579-81
116 Sato M, Maeda M, Kurosawa H, Inoue Y, Yamauchi Y, Iwase H. Reconstruction of rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical studies. J Orthop Sci. 2000;5: 256-67
117 Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22:165-73
118 Sato M, Maeda M, Kurosawa H, Inoue Y, Yamauchi Y, Iwase H. Reconstruction of rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical studies. J Orthop Sci. 2000;5: 256-67
119 Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22:165-73
120 Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J. Preparation and microstructure analysis of chitosan / hydroxyapatite nanocomposites. J Biomed Mater Res. 2001;55:20-7
121 Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567-75
122 Knaul JZ, Hudson SM, Creber KAM. Improved mechanical properties of chitosan fibers. J Appl Polym Sci. 1999;72:1721-32
123 Taguchi T, Kishida A, Akashi M. Apatite formation on/in hydrogel matrices using an alternate soaking process. Chem Lett. 1998;8:711-12
124 Taguchi T, Kishida A, Akashi M. Apatite formation on/in hydrogel matrices using an alternate soaking process. II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation, J Biomater Sci Polym Ed. 1999;10: 331-39
125 Taguchi T, Kishida A, Akashi M. Apatite formation on/in hydrogel matrices using an alternate soaking process. III. Effect of physicochemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. J Biomater Sci Polym Ed. 1999;10:795-804
126 Lee YL, Khor E, Ling CE. Effects of dry heat and saturated steam on the physical properties of chitosan. J Biomed Mater Res Appl Biomater. 1999;48:111-16
127 Lim LY, Wan LSC. Treatment of chitosan films. Drug Dev Ind Pharm. 1995;21: 839-46
128 Rao SB, Sharma CP. Sterilization of chitosan. J Biomater Appl. 1995;10:136-43
129 Soichiro I, Isamu Y, Kenichi S, Junzo T. Development of the chitosan tube prepared from crab tendon for nerve regeneration. Science and Technology of Advanced Materials. 2003;4:261-268
130 Isamu Y, Soichiro I, Masumi S, Akiyoshi O, Junzo T. The chitosan prepared from crab tendons: II. The chitosan / apatite composites and their application to nerve regeneration. Biomaterials. 2003;24:3285-92
131 Soichiro I, Isamu Y, Masumi S, Shizuko I, Kazuo T, Hisatoshi K, Kenichi S, Junzo T. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Research. 2003;993:111-23
132 Tabata Y, Nagano A, Ikada Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng. 1999; 5:127-38.
133 Yamazaki M, Chiba T. Neuritogenic effect of natural iridoid compounds on PC12h cells and ite possible relation to signaling protein kinases. Biol Pharm Bull. 1996;19:791-5
134 Yamazaki M, Chiba K, Mohri T, Hatanaka H. Cyclic GMP-dependent neurite outgrowth by genipin and nerve growth factor in PC12h cells. Eur J Pharmacol. 2004;488:35-43
135 Tabata Y, Hijikata S, Ikada Y. Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Controll Release. 1994;31:189-99
136 Damink O, Dijkstra LHH, Luyn PJ, MJA van Wachem, PB van Nieuwenhuis, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17:765-73
137 Soichiro I, Kazuo T, Sigenori K, Yu A, Kanae K, Hiroshi I, Kenichi S. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials. 2002;23:4475-81
138 Lee H, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res. 1990;24:1185-201
139 Nishi C, Nakajima N, Ikada Y. In vitro evaluation of cytotocicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res. 1995;29:829-34
140 Lohre JM, Baclig L, Sagartz J, Guida S, Thyagarajan K, Tu R. Evaluation of two epoxy ether compounds for biocompatible potential. Artif Organs. 1992;16:630-3
141 Lohre J M, Baclig L, Wickham E, Guida S, Farley J, Thyagarajan K, Tu R, Quijano RC. Evaluation of epoxy ether fixed bovine arterial grafts for mutagenic potential. ASAIO J. 1993;39:106-13
142 Van Luyn MJA, Van Wachem PB, Olde Damink LHH, Dijkstra PJ, Feijen J, Nieuwenhuis P. Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens. J Biomed Mater Res. 1992;26:1091-110.
143 Paul JN, David AT. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials. 2004;25:1261-7
144 Sung HW, Huang DM, Chang WH, Huang RN, Tsai CC, Liang IL. Gelatin-derived bioadhesives for closing skin wounds: An in vivo study. J Biomater Sci Polymer Ed. 1999;10:751-71
145 Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as biodhesives: In vitro study. J Biomed Mater Res. 1999;520-30
146 Hsieh CY, Tsai SP, Ho MH, Wang DM, Liu CE, Hsieh CH, Tseng HC, Hsieh HJ. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers. 2007;67:124-32
147 Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen-hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002;23:1205-12
148 Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759-67
149 The Controlled Release Society (CRS) website:http://www.ukicrs.org/cr_tech_and_drug_delivery.htm. CR is the use of formulation components and devices to release a therapeutic at a predictable rate in vivo when administered by an injected or non-injected route.
150 The School of Polymers and High Performance Materials at the University of Southern Mississippi, The McCormick Research Group. Website: http://www.psrc.usm.edu/~mccormic/index.html.
151 王本祥:現代中藥藥理學. 天津科學技術出版社.
152 唐志民:葛根素注射液治療糖尿病周圍神經病變的療效觀察. 醫學文選. 2000;19(5):651-2
153 胡衛芬:葛根素治療糖尿病周圍神經病變40例分析. 中國中醫藥科技. 2000;7(5):329
154 于健:葛根素對糖尿病周圍神經病變患者肌電圖及血液流變學的影響. 四川中醫. 2002;20(2):7-8
155 李澤、汪賀媛、陳月華、郝志紅:葛根素治療突發性耳聾與神經性耳鳴的療效觀察. 現代中西醫結合雜誌. 2000;9(9):780-1
156 高唱、王景周、王琳、周紅傑、高東、張莉莉:葛根素對局灶性腦缺血-再灌流大鼠神經細胞凋亡的作用. 中國急救醫學. 2003;23(1):14-5
157 耿寶玉、華守明、管耘園、施海峰、謝曉謙:葛根素對壓力超負荷兔心力衰竭及神經內分泌激素的影響. 中國交通醫學雜誌. 2004;18(3):245-248
158 Jiang RW, Lau KM, Lam HM, Yam WS, Leung LK, Choi KL, Waye MY, Thomas CW, Woo KS, Fung KP. A comparative study on aqueous root extracts of Pueraria thomsonii and Pueraria lobata by antioxidant assay and HPLC fingerprint analysis. J Ethnopharmacol. 2005;96:133-8
159 Guerra MC, Speroni E, Broccoli M, Cangini M, Pasini P, Minghetti A, Crespi-Perellino, Mirasoli M, Cantelli-Forti G, Paolini M. Comparison between Chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin Antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sciences. 2000;67:2997-3006
160 Mercer LD, Kelly BL, Horne MK, Beart PM. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol. 2005;69:339-45
161 Xiong FL, Sun XH, Gan L, Yang XL, Xu HB. Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur J Pharmacol. 2006;529:1-7
162 Kim IT, Park YM, Shin KM, Ha J, Choi J, Jung HJ, Park HJ, Lee KT. Anti-inflammatory and anti-nociceptive effects of the extract from Kalopanax pictus, Pueraria thunbergiana and Rhus verniciflua. J Ethnopharmacol. 2004;94:165-73
163 Jiang B, Liu JH, Bao YM, An LJ. Hydrogen peroxide-induced apoptosis in pc12 cells and the protective effect of puerarin. Cell Biol Int. 2003;27:1025-31
164 Zengli Y, Wenjie L. Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Letters. 2006;238:53-60
165 Overstreet DH, Ma ZZ, Lee DYW. The isoflavone puerarin reduces anxiety symptoms induced by acute 5-HT2c or inverse benzodiazepine agonists or alcohol withdrawal. P.3. Anxiety disorders and anxiolytics. S361
166 Overstreet DH, Kralic JE, Morrow AL, Ma ZZ, Zhang YW, Lee DYW. NPI-031G (puerarin) reduces anxiogenic effects of alcohol withdrawal or benzodiazepine inverse or 5-HT2C agonists. Pharmacol Biochem Behav. 2003;75:619-25
167 Yana B, Wang DY, Xing DM, Ding Y, Wang RF, Lei F, Du L. The antidepressant effect of ethanol extract of radix puerariae in mice exposed to cerebral ischemia reperfusion. Pharmacol Biochem Behav. 2004;78:319-25
168 Shuihua Z, Guang J, Jianwen L. Reversal of chemical-induced liver fibrosis in Wistar rats by puerarin. J Nutr Biochem. 2006;17:485-91
169 Yan LP, Chan SW, Chan ASC, Chen SL, Ma XJ, Xu HX. Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats. Life Sciences. 2006;79:324-30
170 Yeung KY, Leung WS, Xu YC, Vanhoutte PM, Man YK. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. Eur J Pharmacol. 2006;552:105-11
171 Brown MC, Perry VH, Lunn ER, Gordon S, Heumann R. Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron. 1991;6:359-70
172 Monaco S, Gehrmann J, Raivich G, Kreutzberg GW. MHC-positive ramified macrophages in the normal and injured rat peripheral nervous system. J Neurocytol. 1992;21:623-34
173 Dahlin LB, Miyauchi A, Danielsen N, Thomsen P, Kanje M. Stimulation of nerve regeneration by macrophages in granulation tissue. Rest Neurol Neurosci. 1996;9:141-9
174 Miyauchi A, Kanje M, Danielsen N, Dahlin LB. Role of macrophages in the stimulation and regeneration of sensory nerves by transposed granulation tissue and temporal aspects of the responses. Scand J Plast Reconstr Surg Hand Surg. 1997;31:17-23
175 Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987;330:658-9
176 Heumann R, Hengerer B, Brown M, Perry H. Molecular mechanisms leading to lesion-induced increases in nerve growth factor synthesis. Ann N Y Acad Sci. 1991;633:581-2



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top