跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張美瑜
研究生(外文):Mei-Yu Chang
論文名稱:建立調節脂肪酸代謝機能成分之篩選平台並應用於抗代謝症候群
論文名稱(外文):Establishing a Platform for Screening Food Components with Regulating Effect on Fatty Acid Metabolism and Applicationin Treating Metabolic Syndrome
指導教授:趙蓓敏
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:乙醯輔酶A 羧化酶代謝症候群脂質生合成
外文關鍵詞:Acetyl - CoA carboxylase (ACC)Metabolic syndromeFatty acid synthesis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:756
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acetyl - CoA carboxylase (ACC) 為脂肪酸生合成關鍵酵素,具兩種重要調節脂肪酸代謝之功能,除了促進脂肪酸合成外,產物malonyl - CoA為脂肪酸氧化之inhibitor。基於抑制脂肪酸合成與促進脂肪酸氧化的觀點,抗ACC藥物及ACC 2基因剔除鼠已證實抑制ACC應可降低代謝症候群之風險(例如,腹部肥胖、高三酸甘油酯血症、胰島素阻抗等)。因此本研究旨在建立脂肪酸代謝關鍵步驟的活性篩選平台,用於評估植物萃製物(台灣常見的中草藥)和多酚類化合物在預防或改善代謝症候群的功效。
自鼠肝分離純化ACC蛋白質,經一連串硫酸銨沉澱、calcium phosphate gel fractionation、DEAE-cellulose chromatography,得ACC酵素。分離出的酵素確認可被已知ACC抑制劑5 - (tetradecyloxy) – 2 - furoyl-coenzyme A (TOFyl - CoA)抑制其活性,亦可被ACC活化物 citrate活化,以Western blot發現確實隨著純化過程而增加ACC蛋白質量。利用此純化ACC測試24種植物乙酸乙酯萃、水萃或酒精萃,篩選出四種乙酸乙酯萃和四種水萃或酒精萃能明顯抑制ACC活性,IC50界於0.04 ~ 0.11 mg / mL。選擇NO.11酸性酒精萃投入動物實驗驗證,給予已誘發代謝症候群的C57BL/6J小鼠飼料中添加1500 mg / kg的NO.11酒精萃,五週後發現確實可降低體重、高三酸甘油酯血症與高胰島素血症之情形,胰島素阻抗亦有明顯改善。
另外,也應用此平台篩選具抗代謝症候群潛能之抗氧化物,綠茶中EGCg為已知具有抑制ACC活性的能力,將EGCg做為正對照,篩出可抑制ACC活性之數種多酚,抑制效果為:Quercetin>Resveratrol、EGCg>Curcumin、Genistein>Naringenin>Catechin。
因此,此研究成功建立了ACC活性的篩選平台,可運用在未來快速大量進行天然食品中降低代謝症候群功能成分之篩選,有助於日後發展抗代謝症候群健康食品之開發。
Acetyl - CoA carboxylase (ACC), the key enzyme for fatty acid synthesis, plays an important role in fatty acid metabolism. Not only accelerating fatty acid synthesis, its product, malonyl - CoA is also the inhibitor of fatty acid oxidation. According to the theory that inhibition of fatty acid synthesis and / or acceleration of fatty acid oxidation, as shown in the anti-ACC drugs and the ACC2 gene knockout mice, inhibition of ACC might be an effective strategy for lowering the risk of metabolic syndrome (i.e. the clustering of risk factors, including abdominal obesity, hypetriglyceridemia and insulin resistance is seen in an individual.). Therefore, this study tried to establish a screening platform based on the key enzyme which regulates the fatty acid metabolism. The herbal extracts (24 Taiwanese traditional folk – medicine used herbs) and natural antioxidants were tested in this platform to identify their potential in preventing and ameliorating metabolic syndrome.
First, the ACC used in this study was purified from rat livers. After ammonium sulfate precipitation, calcium phosphate gel fractionation and DEAE-cellulose chromatography, the isolated product is confirmed to be ACC by its well-known inhibitor -- 5 - (tetradecyloxy) – 2 - furoyl-coenzyme A (TOFyl - CoA), and activator -- citrate. During the purification process, the quantity of ACC protein enriched as shown in the Western blot. The purified ACC was used to test the ethanol, EA and water extracts of 24 herbs. 4 EA extracts and 4 water extracts had been shown to inhibit the ACC activity apparently. The IC50 is in the range of 0.04 ~ 0.11 mg / mL. Thereafter, the acidic ethanol extract of herbal NO.11 was chosen to test the physical effect in animal study. The acidic ethanol extract of NO.11 was administrated at a dose of 1500 mg / kg to the high fat diet - induced metabolic syndrome C57BL / 6J mice. After 5 weeks, the body weight was significantly reduced in supplemented group. The hypertriglyceridemia and hyperinsulinemia observed in high fat diet group was not happened in supplemented group. In addition, the insulin resistance induced by high fat diet was also ameliorated in supplemented group.
8 antioxidants were also tested in this ACC inhibition platform. The EGCg in green tea had been reported for its inhibition ability on ACC activity. Thus, this compound is chosen as a positive control. The order of polyphenols on inhibiting ACC activity is as follow : Quercetin>Resveratrol、EGCg>Curcumin、Genistein>Naringenin>Catechin。
This study successfully established a platform for screening compounds with anti–metabolic syndrome potential, based on the inhibition of ACC activity. It can be applied as a high through-put screening for compounds with potential in treating metabolic syndrome. This will be helpful in developing the health foods with anti-metabolic syndrome activity in the future.
縮寫對照表…………………………………………………………………..I
組別縮寫意義…………………………………………………………..…III
摘要………………………………………………………………………...IV
Abstract…………………………………………………..………………..VI
第一章 前言………………………………………………………………...1
第二章 文獻回顧…………………………………………………………...2
一、代謝症候群……………………………………………………….........2
(一) 代謝症候群之定義…..……………………………………………………...………2
(二) 代謝症候群之判定方法…………….………………………….…………………...2
(三) 代謝症候群在台灣之判定標準與盛行率………………………………………….3
(四) 代謝症候群之病原論………………………………………………………….…....5
(五) 異常脂肪酸代謝與代謝症候群之相關性………………………………………….6
(六) 治療代謝症候群之方法…………………………………………………………….7
二、乙醯輔酶A羧化酶(Acetyl – Coenzyme A carboxylase)……..……… 7
(一) Acetyl – Coenzyme A carboxylase (ACC)的由來………………..………………7
(二) ACC催化反應………………………..……………………………………………...8
(三) ACC2蛋白質結構與異構物………………….…………………………………......8
(四) ACC的反應產物malonyl – Coenzyme A…………………………………...........10
三、ACC基因表現之調控作用…………….……………………………..10
(一) ACC1…………………………………………………………………………….10
(二) ACC2…………...………………………………………………………………......11
四、ACC酵素活性之調控作用……………………………………………11
(一).ACC活性之異位調控作用 (Allosteric regulation)...……………………………11
(二) ACC活性之共價修飾作用 (Covalent modification regulation)………………12
五、抑制ACC改善代謝症候群之相關研究.............................................13
(一) 基因層次方面……………………………….……………………………………..14
(二) ACC inhibitors.........................................................................................................15
六、天然食材抑制脂肪酸合成之相關研究………………………………18
(一) 多酚成分……………………………….…………………………………………...18
(二).非多酚成分................................................................................................................19
第三章 材料與方法……………………………………………………….21
實驗架構大綱………………………………………..…………………….22
實驗一 建立ACC活性抑制篩選平台並應用於植物萃製物篩選……23
一、建立ACC活性測定方法……………………………….....................23
二、純化ACC(Purification of ACC)………………….…………….....27
三、驗証純化產物…………………………..……………………......38
(一). Citrate活化ACC試驗……………………………………………………………38
(二). 5 - (tetradecyloxy) - 2 - furancarboxylic acid (TOFA)抑制ACC試驗……….38
(三). 西方點墨法(Western blot)分析純化ACC蛋白質………………………………41
四、測試植物萃製物………………..……………………...................42
五、抗代謝症候群之動物實驗……………..…………………….......43
(一) 動物飼養…………………………………………………………………………..43
(二) 試驗飼料之配置…………………………………………………………………...43
(三) 動物犧牲與樣品收集……………………………………………………………...45
(四) 血液生化值分析…………………………………………………………………...45
(五) 肝臟脂質分析……………………………………………………………………...45
(六) 口服葡萄糖耐受測試 Oral Glucose Tolerance Test (OGTT)…………………46
(七) 胰島素耐受測試 Insulin Tolerance Test (ITT)………………………………….46
(八) 肝臟ACC活性分析………………………………………………………………47
實驗二. 篩選抑制ACC活性之天然抗氧化物………………………….48
一、(-)-epigallocatechin gallate (EGCg)…………………………………48
二、天然抗氧化劑……………………………………………………..49
統計分析………………………………………………………...................51
第四章 結果…………………………………………………………….....52
第五章 討論……………………………………………………………...85
第六章 結論……………………………………………………………...96
第七章 參考文獻………………………………………………………...98
附錄……………………………………………………………………….111
許珊菁。鼠模式中高脂飲食、肥胖與脂質調控基因之表現。台灣大學微生物與生化學研究所博士論文,2006。
1. Reaven GM. Banting lecture 1988. role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595-607.
2. Kaplan NM. The deadly quartet. upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989 Jul;149(7):1514-20.
3. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992 Jun;41(6):715-22.
4. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001 May 16;285(19):2486-97.
5. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: Findings from the third national health and nutrition examination survey. JAMA. 2002 Jan 16;287(3):356-9.
6. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001 Apr;24(4):683-9.
7. Trevisan M, Liu J, Bahsas FB, Menotti A. Syndrome X and mortality: A population-based study. risk factor and life expectancy research group. Am J Epidemiol. 1998 Nov 15;148(10):958-66.
8. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006 May;23(5):469-80.
9. Bonora E, Formentini G, Calcaterra F, Lombardi S, Marini F, Zenari L, Saggiani F, Poli M, Perbellini S, et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: Prospective data from the verona diabetes complications study. Diabetes Care. 2002 Jul;25(7):1135-41.
10. Resnick HE, Jones K, Ruotolo G, Jain AK, Henderson J, Lu W, Howard BV, Strong Heart Study. Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic american indians: The strong heart study. Diabetes Care. 2003 Mar;26(3):861-7.
11. DECODE Study Group, European Diabetes Epidemiology Group. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care. 2003 Mar;26(3):688-96.
12. Hills SA, Balkau B, Coppack SW, Dekker JM, Mari A, Natali A, Walker M, Ferrannini E, EGIR-RISC Study Group. The EGIR-RISC STUDY (the european group for the study of insulin resistance: Relationship between insulin sensitivity and cardiovascular disease risk): I. methodology and objectives. Diabetologia. 2004 Mar;47(3):566-70.
13. Carr A, Workman C, Carey D, Rogers G, Martin A, Baker D, Wand H, Law M, Samaras K, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: Randomised, double-blind, placebo-controlled trial. Lancet. 2004 Feb 7;363(9407):429-38.
14. Grundy SM, Brewer HB,Jr, Cleeman JI, Smith SC,Jr, Lenfant C, American Heart Association, National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the national heart, lung, and blood Institute/American heart association conference on scientific issues related to definition. Circulation. 2004 Jan 27;109(3):433-8.
15. Bjorntorp P. Fatty acids, hyperinsulinemia, and insulin resistance: Which comes first? Curr Opin Lipidol. 1994 Jun;5(3):166-74.
16. Despres JP, Marette A. Relation of components of insulin resistance syndrome to coronary disease risk. Curr Opin Lipidol. 1994 Aug;5(4):274-89.
17. McGarry JD. What if minkowski had been ageusic? an alternative angle on diabetes. Science. 1992 Oct 30;258(5083):766-70.
18. Bergman RN, Van Citters GW, Mittelman SD, Dea MK, Hamilton-Wessler M, Kim SP, Ellmerer M. Central role of the adipocyte in the metabolic syndrome. J Investig Med. 2001 Jan;49(1):119-26.
19. Kusunoki J, Kanatani A, Moller DE. Modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome. Endocrine. 2006 Feb;29(1):91-100.
20. Arauz-Pacheco C, Parrott MA, Raskin P, American Diabetes Association. Treatment of hypertension in adults with diabetes. Diabetes Care. 2003 Jan;26 Suppl 1:S80-2.
21. Colwell JA, American Diabetes Association. Aspirin therapy in diabetes. Diabetes Care. 2003 Jan;26 Suppl 1:S87-8.
22. Sherwin RS, Anderson RM, Buse JB, Chin MH, Eddy D, Fradkin J, Ganiats TG, Ginsberg H, Kahn R, et al. The prevention or delay of type 2 diabetes. Diabetes Care. 2003 Jan;26 Suppl 1:S62-9.
23. GIBSON DM, TITCHENER EB, WAKIL SJ. Studies on the mechanism of fatty acid synthesis. V. bicarbonate requirement for the synthesis of long-chain fatty acids. Biochim Biophys Acta. 1958 Nov;30(2):376-83.
24. Jitrapakdee S, Wallace JC. The biotin enzyme family: Conserved structural motifs and domain rearrangements. Curr Protein Pept Sci. 2003 Jun;4(3):217-29.
25. Lane MD, Moss J, Polakis SE. Acetyl coenzyme A carboxylase. Curr Top Cell Regul. 1974;8(0):139-95.
26. Tong L. Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci. 2005 Aug;62(16):1784-803.
27. Wakil SJ, Stoops JK, Joshi VC. Fatty acid synthesis and its regulation. Annu Rev Biochem. 1983;52:537-79.
28. Alban C, Job D, Douce R. BIOTIN METABOLISM IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:17-47.
29. Cronan JE,Jr, Waldrop GL. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res. 2002 Sep;41(5):407-35.
30. Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases. Arch Biochem Biophys. 2003 Jun 15;414(2):211-22.
31. Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: Structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem. 2004 Jun;68(6):1175-84.
32. Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS, Wakil SJ. Human acetyl-CoA carboxylase: Characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4011-5.
33. Munday MR. Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans. 2002 Nov;30(Pt 6):1059-64.
34. Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta. 2005 Mar 21;1733(1):1-28.
35. Abu-Elheiga L, Almarza-Ortega DB, Baldini A, Wakil SJ. Human acetyl-CoA carboxylase 2. molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997 Apr 18;272(16):10669-77.
36. Trumble GE, Smith MA, Winder WW. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem. 1995 Jul 1;231(1):192-8.
37. Bianchi A, Evans JL, Iverson AJ, Nordlund AC, Watts TD, Witters LA. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502-9.
38. McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395-420.
39. Brun T, Roche E, Assimacopoulos-Jeannet F, Corkey BE, Kim KH, Prentki M. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling. Diabetes. 1996 Feb;45(2):190-8.
40. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271-84.
41. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. from concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1-14.
42. Buckley MG, Rath EA. Regulation of fatty acid synthesis and malonyl-CoA content in mouse brown adipose tissue in response to cold-exposure, starvation or re-feeding. Biochem J. 1987 Apr 15;243(2):437-42.
43. Saha AK, Kurowski TG, Ruderman NB. A malonyl-CoA fuel-sensing mechanism in muscle: Effects of insulin, glucose, and denervation. Am J Physiol. 1995 Aug;269(2 Pt 1):E283-9.
44. Rasmussen BB, Holmback UC, Volpi E, Morio-Liondore B, Paddon-Jones D, Wolfe RR. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J Clin Invest. 2002 Dec;110(11):1687-93.
45. Chen S, Ogawa A, Ohneda M, Unger RH, Foster DW, McGarry JD. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. Diabetes. 1994 Jul;43(7):878-83.
46. Iritani N. Nutritional and hormonal regulation of lipogenic-enzyme gene expression in rat liver. Eur J Biochem. 1992 Apr 15;205(2):433-42.
47. Kim KH. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 1997;17:77-99.
48. Mao J, Chirala SS, Wakil SJ. Human acetyl-CoA carboxylase 1 gene: Presence of three promoters and heterogeneity at the 5''-untranslated mRNA region. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7515-20.
49. Zhang Y, Yin L, Hillgartner FB. SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res. 2003 Feb;44(2):356-68.
50. Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, et al. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem. 1999 Dec 10;274(50):35832-9.
51. Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta. 2005 Mar 21;1733(1):1-28.
52. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004 Dec 23;432(7020):1027-32.
53. Ishii S, Iizuka K, Miller BC, Uyeda K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15597-602.
54. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell. 2005 Jan 28;120(2):261-73.
55. Thampy KG. Formation of malonyl coenzyme A in rat heart. identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631-4.
56. Winz R, Hess D, Aebersold R, Brownsey RW. Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. J Biol Chem. 1994 May 20;269(20):14438-45.
57. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem. 1994 Oct 14;269(41):25871-8.
58. Iverson AJ, Bianchi A, Nordlund AC, Witters LA. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition. Biochem J. 1990 Jul 15;269(2):365-71.
59. Lee JJ, Moon YA, Ha JH, Yoon DJ, Ahn YH, Kim KS. Cloning of human acetyl-CoA carboxylase beta promoter and its regulation by muscle regulatory factors. J Biol Chem. 2001 Jan 26;276(4):2576-85.
60. Atkinson LL, Fischer MA, Lopaschuk GD. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem. 2002 Aug 16;277(33):29424-30.
61. Nakanishi S, Numa S. Purification of rat liver acetyl coenzyme A carboxylase and immunochemical studies on its synthesis and degradation. Eur J Biochem. 1970 Sep;16(1):161-73.
62. Munday MR, Campbell DG, Carling D, Hardie DG. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem. 1988 Aug 1;175(2):331-8.
63. Beaty NB, Lane MD. Kinetics of activation of acetyl-CoA carboxylase by citrate. relationship to the rate of polymerization of the enzyme. J Biol Chem. 1983 Nov 10;258(21):13043-50.
64. Nikawa J, Tanabe T, Ogiwara H, Shiba T, Numa S. Inhibitory effects of long-chain acyl coenzyme A analogues on rat liver acetyl coenzyme A carboxylase. FEBS Lett. 1979 Jun 15;102(2):223-6.
65. Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res. 2004 Mar;43(2):91-104.
66. Foster DW. The role of the carnitine system in human metabolism. Ann N Y Acad Sci. 2004 Nov;1033:1-16.
67. Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6409-14.
68. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol. 2002 Jun;92(6):2475-82.
69. Rubink DS, Winder WW. Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase. J Appl Physiol. 2005 Apr;98(4):1221-7.
70. Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002 Nov;30(Pt 6):1064-70.
71. Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand. 2003 Aug;178(4):435-42.
72. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003 Feb;31(Pt 1):162-8.
73. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC, Birnbaum M, et al. Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models. Biochem Soc Trans. 2003 Feb;31(Pt 1):216-9.
74. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005 Jan;1(1):15-25.
75. Flier JS. Obesity wars: Molecular progress confronts an expanding epidemic. Cell. 2004 Jan 23;116(2):337-50.
76. Gil-Campos M, Canete RR, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. 2004 Oct;23(5):963-74.
77. Wong GW, Wang J, Hug C, Tsao TS, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10302-7.
78. Fasshauer M, Paschke R, Stumvoll M. Adiponectin, obesity, and cardiovascular disease. Biochimie. 2004 Nov;86(11):779-84.
79. Tong L, Harwood HJ,Jr. Acetyl-coenzyme A carboxylases: Versatile targets for drug discovery. J Cell Biochem. 2006 Dec 15;99(6):1476-88.
80. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001 Mar 30;291(5513):2613-6.
81. Abu-Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10207-12.
82. Abu-Elheiga L, Matzuk MM, Kordari P, Oh W, Shaikenov T, Gu Z, Wakil SJ. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12011-6.
83. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001 Mar 30;291(5513):2613-6.
84. Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006 Mar;116(3):817-24.
85. McCune SA, Harris RA. Mechanism responsible for 5-(tetradecyloxy)-2-furoic acid inhibition of hepatic lipogenesis. J Biol Chem. 1979 Oct 25;254(20):10095-101.
86. Arbeeny CM, Meyers DS, Bergquist KE, Gregg RE. Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster. J Lipid Res. 1992 Jun;33(6):843-51.
87. Parker RA, Kariya T, Grisar JM, Petrow V. 5-(tetradecyloxy)-2-furancarboxylic acid and related hypolipidemic fatty acid-like alkyloxyarylcarboxylic acids. J Med Chem. 1977 Jun;20(6):781-91.
88. Fukuda N, Ontko JA. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. J Lipid Res. 1984 Aug;25(8):831-42.
89. Kempen HJ, Imbach AP, Giller T, Neumann WJ, Hennes U, Nakada N. Secretion of apolipoproteins A-I and B by HepG2 cells: Regulation by substrates and metabolic inhibitors. J Lipid Res. 1995 Aug;36(8):1796-806.
90. Triscari J, Sullivan AC. Anti-obesity activity of a novel lipid synthesis inhibitor. Int J Obes. 1984;8 Suppl 1:227-39.
91. Harwood HJ,Jr, Petras SF, Shelly LD, Zaccaro LM, Perry DA, Makowski MR, Hargrove DM, Martin KA, Tracey WR, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem. 2003 Sep 26;278(39):37099-111.
92. Harwood HJ,Jr. Acetyl-CoA carboxylase inhibition for the treatment of metabolic syndrome. Curr Opin Investig Drugs. 2004 Mar;5(3):283-9.
93. Kuppusamy UR, Das NP. Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes. Biochem Pharmacol. 1992 Oct 6;44(7):1307-15.
94. Smith CJ, Manganiello VC. Role of hormone-sensitive low km cAMP phosphodiesterase in regulation of cAMP-dependent protein kinase and lipolysis in rat adipocytes. Mol Pharmacol. 1989 Mar;35(3):381-6.
95. Watanabe J, Kawabata J, Niki R. Isolation and identification of acetyl-CoA carboxylase inhibitors from green tea (camellia sinensis). Biosci Biotechnol Biochem. 1998 Mar;62(3):532-4.
96. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 2005 Feb 18;280(7):5636-45.
97. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006 Nov 16;444(7117):337-42.
98. Hashimura H, Ueda C, Kawabata J, Kasai T. Acetyl-CoA carboxylase inhibitors from avocado (persea americana mill) fruits. Biosci Biotechnol Biochem. 2001 Jul;65(7):1656-8.
99. Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: An additional mechanism for the hypolipidemic effects of berberine. J Lipid Res. 2006 Jun;47(6):1281-8.
100. Xiao CW, Wood C, Huang W, L''Abbe MR, Gilani GS, Cooke GM, Curran I. Tissue-specific regulation of acetyl-CoA carboxylase gene expression by dietary soya protein isolate in rats. Br J Nutr. 2006 Jun;95(6):1048-54.
101. Tanabe T, Nakanishi S, Hashimoto T, Ogiwara H, Nikawa J, Numa S. Acetyl-CoA carboxylase from rat liver. Meth Enzymol. 1981;71(Pt C):5-16.
102. Iritani N. Nutritional and hormonal regulation of lipogenic-enzyme gene expression in rat liver. Eur J Biochem. 1992 Apr 15;205(2):433-42.
103. VAGELOS PR, ALBERTS AW, MARTIN DB. Studies on the mechnism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem. 1963 Feb;238:533-40.
104. Lee WM, Elliott JE, Brownsey RW. Inhibition of acetyl-CoA carboxylase isoforms by pyridoxal phosphate. J Biol Chem. 2005 Dec 23;280(51):41835-43.
105. Thampy KG, Wakil SJ. Regulation of acetyl-coenzyme A carboxylase. I. purification and properties of two forms of acetyl-coenzyme A carboxylase from rat liver. J Biol Chem. 1988 May 5;263(13):6447-53.
106. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006 Aug;55(8):2180-91.
107. Senen D, Adanali G, Ayhan M, Gorgu M, Erdogan B. Contribution of vitamin C administration for increasing lipolysis. Aesthetic Plast Surg. 2002 Mar-Apr;26(2):123-5.
108. Raederstorff DG, Schlachter MF, Elste V, Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem. 2003 Jun;14(6):326-32.
109. Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V, Weber P. TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann Nutr Metab. 2005 Jan-Feb;49(1):54-63.
110. Odbayar TO, Badamhand D, Kimura T, Takashi Y, Tsushida T, Ide T. Comparative studies of some phenolic compounds (quercetin, rutin, and ferulic acid) affecting hepatic fatty acid synthesis in mice. J Agric Food Chem. 2006 Oct 18;54(21):8261-5.
111. Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr. 2001 Nov;131(11):2932-5.
112. Ae Park S, Choi MS, Cho SY, Seo JS, Jung UJ, Kim MJ, Sung MK, Park YB, Lee MK. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 2006 Aug 15;79(12):1207-13.
113. Yang JY, Lee SJ, Park HW, Cha YS. Effect of genistein with carnitine administration on lipid parameters and obesity in C57Bl/6J mice fed a high-fat diet. J Med Food. 2006 Winter;9(4):459-67.
114. Clark RF, Zhang T, Xin Z, Liu G, Wang Y, Hansen TM, Wang X, Wang R, Zhang X, et al. Structure-activity relationships for a novel series of thiazolyl phenyl ether derivatives exhibiting potent and selective acetyl-CoA carboxylase 2 inhibitory activity. Bioorg Med Chem Lett. 2006 Dec 1;16(23):6078-81.
115. Clark RF, Zhang T, Wang X, Wang R, Zhang X, Camp HS, Beutel BA, Sham HL, Gu YG. Phenoxy thiazole derivatives as potent and selective acetyl-CoA carboxylase 2 inhibitors: Modulation of isozyme selectivity by incorporation of phenyl ring substituents. Bioorg Med Chem Lett. 2007 Apr 1;17(7):1961-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top