跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪宜君
研究生(外文):Yi-Chun Hung
論文名稱:Meropenem治療輸注時間對咽喉與肛門抗藥菌落的影響
論文名稱(外文):The Impact of Meropenem Infusion Time on Resistant Strains Selection in Anus and Throat
指導教授:王任賢
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:64
中文關鍵詞:藥物動力學抗藥性細菌
外文關鍵詞:meropenempharmacokinetictime-dependent antibiotic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:613
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前言
抗藥性細菌增加是廣泛使用抗生素的結果,如何減低抗藥性細菌的增加是近代醫學上的一大挑戰。臨床上,細菌產生抗藥性的原因中,抗生素的藥物動力學(pharmacokinetic;PK)與藥效學(pharmacodynamic;PD)參數的改變是一重要因素。其中,對於時間依賴型(time–dependent)抗生素而言,藥物在血中濃度大於最小抑菌濃度的時間(T>MIC)是決定治療效果的重要指標,此指標跟抗藥性細菌產生的關連性至今還未釐清。但抗生素給藥的輸注形式是影響藥物動力學與藥效學參數的重要因素之ㄧ。本研究是以抗生素meropenem為例,利用電腦模擬試算取得適當的給藥劑量,並探討不同形式的抗生素輸注時間 (即間歇性輸注與持續性輸注),所產生抑制肛門 (anus) 與喉嚨 (throat) 細菌群 (flora) 改變的效應。
研究材料與方法
自2005年1月1日至2006年6月30日期間總共有215位病患申請使用meropenem治療。扣除不符收案條件或完成治療但採檢不完整案例,實際確定收案分配到group I (對照組) 間歇性輸注30分鐘組病患有55位,及group II (實驗組) 持續性輸注 3小時組有49位,所有病人均有採集到治療前與治療後的肛門與喉嚨swab (拭子)的細菌培養。
結果
經過每6小時靜脈輸注meropenem 500 mg治療14日後,在肛門GNB 細菌群 (flora) 部分,Enterobacteriaceae (腸桿菌科) 細菌群之總數與比例降低,但是glucose nonfermenter (葡萄糖非發酵性) 細菌升高。其細菌群下降的幅度在grou II 持續性輸注3小時組明顯大於group I 間歇性輸注30分鐘組。但相對於Enterobacteriaceae (腸桿菌科),在group I與group II兩組的glucose nonfermenter (葡萄糖非發酵性細菌) 的細菌群總數與比例都是升高,而其中MDR (multiple drug reisitance)菌株上升量尤其驚人。在喉嚨GNB細菌群部份的變化,group I與group II兩組Enterobacteriaceae (腸桿菌科)細菌大量降低,甚至ESBL 菌株與inducible菌株均被壓縮到幾乎不存在,但對glucose nonfermenter (葡萄糖非發酵性) 細菌中之MDR菌株及Stenotrophomonas maltophila (嗜麥芽窄食單胞菌)仍見大量升高。

結論
本實驗中,meropenem給藥輸注時間延長 (持續性輸注3小時組),確實會讓血中濃度超過最小抑菌濃度佔給藥間隔時間的比例(%T>MIC) 變的較佳。Meropenem使用低劑量延長給藥輸注時間的治療方式,對於Enterobacteriaceae (腸桿菌科) 細菌的根除效果較好,且throat (喉嚨)部位的根除效果較anus (肛門)部位明顯。但是對於glucose nonfermenter (葡萄糖非發酵性) 細菌,包括MDR菌株及Stenotrophomonas maltophila的根除效果,使用低劑量是不足的,即使延長輸注時間也幫助不大。因此,對於難治的細菌或容易出現抗藥性細菌的感染,應依據藥物動力學與藥效學考量抗生素使用適當的劑量級注射時間方式是必要的。
Background
Meropenem, a broad-spectrum antibiotic of carbapenem, is active against both gram-positive and negative organisms. There were postulate that the way of administration may influence effect of the pharmacodynamics in bactericidal activity (%T>MIC). However , the bactericidal activity is coherent between the high dosage (2000 mg) and low dosage (500 mg). In the view of cost effectiveness goal, choice the low dose 500 mg meropenem with correct administration way may a best priority of strategy.
Objectives
The aims of this study was to differentiated the pharmacodynamics between 3 hours infusion and 30 minutes infusion of 500 mg meropenem.
Materials and methods
This was open-randomized study, adults with ventilation in the intensive care had infection required antimicrobial agent treatment were randomized to receive 500 mg of meropenem every 6 hours by 3 hours or 30 minutes infusion for 2 weeks. Throat and anus swab cultures were obtained at baseline and at the end of study therapy and take culture to compare the change of throat and gut flora.
Endpoints:
Observations and comparison the change of throat and gut flora.
Result:
One hundred and four patients were randomized to receive 30 minutes (n=55) or 3 hours (n=49) infusion of meropenem. Throat and anus swab cultures of these patients were done before and after meropenem administration. The throat culture results of 30 minutes infusion group before and after meropenem use were Enterobacteriaceae (27/3)、ESBL-producing Enterobacteriaceae (12/0) and glucose-non-ferment gram-negative bacilli (GNFGNB) (30/31); 3 hours group were Enterobacteriaceae (23/0)、ESBL-producing Enterobacteriaceae (8/0) and GNFGNB (39/37). The anus culture results of 30 minutes infusion group before and after meropenem use were Enterobacteriaceae (53/48)、ESBL-producing Enterobacteriaceae (42/28) and GNFGNB (15/27); 3 hours group were Enterobacteriaceae (46/32)、ESBL-producing Enterobacteriaceae (38/16) and GNFGNB (12/20).
Conclusion:
3 hours infusion of meropenem 500 mg every 6 hours has more decreasing the colonization of Enterobacteriaceae, ESBL– producing Enterobacteriaceae strains and Amp C inducible strains in throat and anus than 30 minutes infusion.
目錄 I
附圖目錄 III
附表目錄 IV
中文摘要 1
英文摘要 4
第一章 前言 7
第一節 研究背景 7
抗藥性細菌 7
抗生素的藥物動力學與藥效學關係 18
時間依賴型抗生素 19
Meropenem 24
第二節 研究目的 39
第二章 研究方法 40
第一節 研究材料 40
病人收集條件 40
細菌檢體收集條件 43
第二節 研究設計 45
第三節 統計方法 48
第三章 研究結果 49
肛門GNB flora的改變 49
喉嚨GNB flora的改變 50
第四章 結論與討論 51
參考文獻 58
1.Niederman Michael S. Principles of appropriate antibiotic use. International Journal of Antimicrobial Agents 2005; 26 (S3): S170-S175
2.DeBellis, Ronald J The role of resistance and impact on appropriate antimicrobial use. American Journal of Therapeutics. 2004; 11 (Suppl 1): S1-S8
3.Kollef Marin H. The importance of appropriate initial antibiotic therapy for hospital-acquired infections. American Journal of Medicine 2003;115:582-584
4.Andrews Thomas M. Current concepts in antibiotic resistance. Corrent Opinion in otolaryngology & head and nech surgery 2003; 11: 409-415
5.Jansen W.T.M., Bruggen J.T., Verhoef J., and Fluit A.C.. Bacterial resistance: a sensitive issue complexity of the challenge and containment strategy in Europe. Drug Resistance Updates 2006; 9: 123-133
6.Beović Bojana. The issue of antimicrobial resistance in human medicine. International Journal of Food Microbiology 2006; 112: 280-287
7.Fish Douglas N. and Ohlinger Martin J.. Antimicrobial resistance: factors and outcomes. Crit Care Clin 2006; 22: 291-311
8.Hsueh Po-Ren, Chen Wen-Hwei, and Luh Kwen-Tay. Relationships between antimicrobial use and antimicrobial resistance in gram-negative bacteria causing nosocomial infections from 1991-2002 at a university hospital in Taiwan. International Journal of Antimicrobial Agent. 2005; 26: 463-472
9.Scheetz Marc H., Hurt Kristin M., Noskin Gary A., and Oliphant Catherine M.. Applying antimicrobial pharmacodynamics to resistant gram-negative pathogens. American Journal of Health-System Pharmacists 2006;63:1346-1360
10.Owens Jr Robert C., Ambrose Paul G. Antimicrobial stewardship and the role of pharmacokinetics–pharmacodynamics in the modern antibiotic era. Diagnostic Microbiology and Infectious Disease 2007; 57: 77S–83S
11.Casadevall Arturo and Pirofski Liise-anne. Host-pathogen interaction: basic concepts of microbial commensalism, colonization, infection, and disease. Infection and Immunity 2000; 68: 6511-6518
12.Silveira Fernanda, Fujitani Shigeki, Paterson David L.. Antibiotic-resistant infections in the critically ill adult. Clin Lab Med 2004; 24: 329-341
13.Gootz Thomas D.. The forgotten Gram–negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Biochemical Pharmacology 2006; 71: 1073-1084
14.French G. L.. Clinical impact and relevance of antibiotic resistance. Advanced Drug Delivery Reviews 2005; 57: 1514-1527
15.Levy Stuart B. and Marshall Bonnie. Antibacterial resistance worldwide:causes, challenges and responses. Nature Medicine 2004; 10 (12 Suppl): S122-129
16.Alanis Alfonso J.. Resistance to antibiotics: are we in the post–antibiotic era? Archives of Medical Research 2005; 36:697-705
17.Craig William A. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clinical Infectious Diseases 1998; 26:1-12
18.DeRyke C. Andrew, Lee Su Y., Kuti Joseph L., and Nicolau David P.. Optimising dosing strategies of antibacterials utilizing pharmacodynamic principles: impact on the development of resistance. Drugs 2006; 66 (1): 1-14
19.Thomas Jennifer K., Forrest Alan, Bhavnani Sujata M., Hyatt Judith M., Cheng Angela, Ballow Charles H., and Schentag Jerome J. Pharmacdynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrobial agents and chemotherapy 1998; 42 (3): 521-527
20.Soy Dolors and Torres Antoni. Antibacterial dosage in intensive-care-unit patients based on pharmacokinetic/pharmacodynamic principles. Curr Opin Crit Care 2006;12:477-482
21.Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis 1998; 27: 10-22
22.Craig William A. and Ebert Steven C. Continuous infusion of β-lactam antibiotics. Antimicrobial agents and chemotherapy 1992; 36 (12): 2577-2583
23.Kasiakou Sofia K, Sermaides George J, Michalopoulos Argyris, Soteriades Elpidoforos S, and Falagas Matthew E. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect Dis 2005; 5 : 581–89
24.Kasiakou Sofia K., Lawrence Kenneth R., Choulis Nicolaos and Falagas Matthew E. Continuous versus intermittent intravenous administration of antibacterials with time-dependent action:A systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs 2005; 65 (17): 2499-2511
25.Craig William A. Antimicrobial resistance issues of the future. Diagnostic Microbiology and Infectious Disease 1996; 25:213-217
26.Jacobs M.R. Optimization of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin Microbiol Infect 2001; 7:589-296
27.Drusano GL. Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis 2003; 36: S42-50
28.Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2004; 2: 289-300
29.Lipman J,Wallis SC, Boots RJ. Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 2003; 97:1149–1154
30.Roberts Jason A., Paratz Jennifer, Paratz Elizabeth, Krueger Wolfgang A, Lipman Jeffrey. Continuous infusion of β-lactam antibiotics in severe infections: a review of its role. International Journal of Antimicrobial Agent. 2007; 30:11-18
31.Craig William A. and Ebert Steven C. Kinetics and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 1991;74:15–22.
32.Buijk SL, Gyssens IC, MoutonJW,Van Vliet A,Verbrugh HA, Bruining HA. Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother 2002;49:121–128
33.Hurst Miriam and Lamb Harriet M. Meropenem: a review of its use in patients in intensive care. Drugs 2000; 59(3):653-680
34.Lowe Matthew N and Lamb Harriet M. Meropenem: an updated review of its use in the management of intra-abdominal infections. Drugs 2000; 60(3):619-646
35.Holliday Stephen M. and Benfield Paul. Meropenem: a pharmacoeconomic review of its use in serious infections. Pharmacoeconomics 1998; 13(3):359-377
36.Pfaller Michael A, Jones Ronald N. A review of the in vitro activity of meropenem and comparative antimicrobial agents tested against 30,254 aerobic and anaerobic pathogens isolated world wide. Diagn Microbiol Infect Dis 1997; 28: 157-163
37.Rodloff A. C., Goldstein E. J. C. and Torres A. Two decades of imipenem therapy. J Antimicrob Chemother 2006; 58: 916-929
38.Thomson Jodi M and Bonomo Robert A. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril! Current Opinion in Microbiology 2005; 8:518–524
39.Walsh Christopher. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000; 406 (6797): 775-781
40.Kumar Ayush, and Schweizer Herbert P. Bacterial resistance to antibiotics: Active efflux and reduced uptake. Advanced Drug Delivery Reviews 2005; 57:1486-1513
41.Wright Gerard D.. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Advanced Drug Delivery Reviews 2005; 57:1451-1470
42.Trautmann M., Heinemann M., Zick R., Möricke A., Seidelmann M., Berger D.
Antibacterial Activity of Meropenem against Pseudomonas aeruginosa, Including Antibiotic-Induced Morphological Changes and Endotoxin-Liberating Effects. Eur J Clin Microbiol Infect Dis 1998; 17:754–760
43.Trautmann M, Zick R, Rukavina T, et al. Antibiotic-induced release of endotoxin: in-vitro comparison of meropenem and other antibiotics. J Antimicrob Chemother 1998; 41: 163-9
44.MICROMEDEX(R) Healthcare Series Vol. 132, 2007
45.Bedikian Annet, Okamoto Mark P, Nakahiro Randall K, et al. Pharmacokinetics of meropenem in patients with intra-abdominal infections. Antimicrob Agents Chemother 1994 Jan; 38 (1): 151-154
46.Solomkin Joseph S., Mazuski John E., Baron Ellen J., Sawyer Robert G., Nathens Avery B., DiPiro Joseph T.,et al. Guidelines for the Selection of Anti-infective Agents for Complicated Intra-abdominal Infections. Clinical Infectious Diseases 2003, 37:997–1005
47.Geroulanos SJ, Meropenem Study Group. Meropenem versus imipenem/cilastatin in intra-abdominal infections requiring surgery. J Antimicrob Chemother 1995; 36 (Suppl. A):191-205
48.Craig W.A. The pharmacology of meropenem, a new carbapenem antibiotic. Clinical Infectious Diseases 1997; 24(suppl 2): S266-275
49.Mattoes Holly M., J Kuti oseph L., Drusano George L., and Nicolau David P. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clinical therapeutics 2004; 26: 1187-1198
50.Thalhammer Florian, Traunmüller Friedericke, Menyawi Ibrahim El, Frass Michael, Hollenstein Ursula M., Locker Gottfried J., et al. Continuous infusion versus intermittent administration of meropenem in critically ill patients. J. Antimicrob. Chemother. 1999; 43: 523-527
51.Jaruratanasirikul Sutep and Sriwiriyajan Somchai. Comparison of the pharmacodynamics of meropenem in healthy volunteers following administration by intermittent infusion or bolus injection. J. Antimicrob. Chemother 2003; 52: 518-521
52.Jaruratanasirikul Sutep, Sriwiriyajan Somchai, and Punyo Jarurat. Comparison of the Pharmacodynamics of Meropenem in Patients with Ventilator-Associated Pneumonia following Administration by 3-Hour Infusion or Bolus Injection. Antimicrobial agents and chemotherapy. 2005; 49 (4): 1337-1339
53.Kitzes-Cohen Ruth, Farin Dina, Piva Guillermo, Myttenaere-Bursztein Sylvie Anne De. Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. International Journal of Antimicrobial Agents 2002; 19: 105–110
54.Dandekar Prachi K., Maglio Dana, Sutherland Christina A., Nightingale Charles H., Nicolau David P. Pharmacokinetics of Meropenem 0.5 and 2 g Every 8 Hours as a 3-Hour Infusion. Pharmacotherapy 2003; 23(8):988-991
55.Kuti Joseph L., Maglio Dana, Nightingale Charles H., Nicolau David P.. Economic benefit of a meropenem dosage strategy based on pharmacodynamic concepts. Am J Health-syst Pharm. 2003; 60: 565-568
56.Lomaestro Ben M. and Drusano G. L..Pharmacodynamic Evaluation of Extending the Administration Time of Meropenem using a Monte Carlo Simulation. Antimicrobial agents and chemotherapy. 2005; 49 (1): 461-463
57.DeRyke C. Andrew, Kuti Joseph L. and Nicolau David P. Reevaluation of current susceptibility breakpoints for Gram-negative rods based on pharmacodynamic assessment. Diagnostic Microbiology and Infectious Disease, In Press, Corrected Proof, Available online 9 March 2007
58.Rhomberg Paul R., Jones Ronald N., Sader Helio S. and Fritsche Thomas R. Antimicrobial resistance rates and clonality results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme: Report of year five (2003). Diagnostic Microbiology and Infectious Disease 2004; 49 (4):273-281
59.DiNubile M. J., Friedland I., Chan C. Y., Motyl M. R., Giezek H., Shivaprakash M., et al.. Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-abdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy. Eur J Clin Microbiol Infect Dis 2005; 24: 443–449
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top