跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甘良義
研究生(外文):Liang-I Kan
論文名稱:沉浸式好氧薄膜生物反應程序處理製藥廢水-模廠之研究
論文名稱(外文):Pilot study of pharmaceutical wastewater treatment by submerged aerobic membrane bioreactor
指導教授:林秀雄林秀雄引用關係
指導教授(外文):Shiow-Shyung Lin
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:220
中文關鍵詞:X射線能量散佈分析儀(EDS)比攝氧率(SOUR)製藥廢水沉浸式好氧薄膜生物反應槽(SAMBR)薄膜阻塞污泥密度指數(SDI)掃描式電子顯微鏡(SEM)
外文關鍵詞:membrane foulingSEMEDSSOURSDIpharmaceutical wastewatersubmerged aerobic membrane bioreactor
相關次數:
  • 被引用被引用:8
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究係現場建構ㄧ沉浸式好氧薄膜生物反應系統(Submerged Aerated Membrane Bioreactor, SAMBR)之模廠,處理製藥業製程廢水。本系統於2005年12月啟動操作,啟動後76天內不排泥,第77天開始排泥時污泥停留時間為331天,系統平均水力停留時間為51小時,本研究探討各項水質參數之去除效果,並針對薄膜之積垢進行觀察與探討。
本研究針對系統排泥,進行兩階段之研究,第一階段為系統啟動至第76天,本階段內不排泥,此後開始排泥,為第二階段。實驗結果顯示,系統於第25天後穩定,至第76天排泥為止,好氧生物處理槽與好氧薄膜槽MLSS濃度各介於5.7~9.1 g/L與6.2~10.0 g/L,MLVSS濃度各為5.2~8.1 g/L與5.4~8.6 g/L,MLVSS/MLSS比值分別介於0.84~0.95與0.81~0.92;開始排泥17天後MLSS值再趨近於穩定,此階段好氧生物處理槽MLSS值12.3~15.2 g/L,好氧薄膜槽MLSS值於13.3~16.7 g/L之間。
BOD去除效率穩定且高達99.3%,COD與SS之去除率達95.9%與100%。系統中BOD體積負荷結果顯示,好氧生物處理槽介於0.068~4.617 kg BOD5/m3 day,好氧薄膜槽介於0.007~0.04 kg BOD5/m3 day;BOD食微比方面,好氧生物處理槽介於0.07~0.36 kg BOD5/kg MLVSS-day,好氧薄膜槽介於0.0005~0.0071 kg BOD5/kg MLVSS-day。系統COD體積負荷結果顯示,好氧生物處理槽介於0.099~6.844 kg COD/m3 day,好氧薄膜槽介於0.011~0.408 kg COD/m3 day;COD食微比方面,好氧生物處理槽介於0.014~0.65 kg COD/kg MLVSS-day,好氧薄膜槽介於0.003~0.079 kg COD/kg MLVSS-day;活性污泥比攝氧率(specific oxygen uptake rate;SOUR)結果顯示,好氧生物處理槽介於19~75 mg-O2/g MLVSS-hr,好氧薄膜槽介於30~81 mg-O2/g MLVSS-hr;放流水污泥密度指數(silt density index;SDI)值均在6.4以下,顯示放流水質良好。
本研究在系統操作至第22天與第96天針對薄膜進行人工清洗,於第102天針對薄膜進行一次膜管內部化學清洗。本研究利用掃描式電子顯微鏡(scanning electron microscope;SEM)掃描與X射線能量散佈分析儀(energy dispersive X-ray spectrometer;EDS)分析薄膜,結果顯示造成薄膜外部膜壁阻塞主要以生物膠體為主,其中ㄧ具薄膜外部膜壁附著之污染物質含有較多種類之重金屬元素,但薄膜內部膜壁重金屬元素種類較少,另一具薄膜內外膜壁之重金屬部分則與上述情形相反;由SEM與EDS結果研判薄膜外部膜壁附著之重金屬物質大部分被生物膠體所包覆,另一具薄膜顯示重金屬物質累積於薄膜內部膜壁,故造成兩組薄膜具有不同之透膜壓力與流通量。
本研究持續監測共計114天,於系統操作第219天再進行程序評估,系統操作與出流水質相當穩定。由研究結果得知,SAMBR系統對於製藥廢水水質之改善,具有極佳之處理幼纂A可作為製藥業製程廢水回收再利用之參考方案。
In this study, a pilot scale of submerged aerobic membrane bioreactor (SAMBR) system was installed for the treatment of pharmaceutical wastewater. The purposes of this study were to evaluate the treatment efficiency of pharmaceutical wastewater by SAMBR and the fouling phenomena of membrane was observed.
In this study, no sludge was withdrawn for 76 days during the initial period of operation. After day 77, sludge retention time (SRT) was set at 331 days and the average hydraulic retention time (HRT) is 51 hours. The results showed that a steady state of bio-system was obtained on day 25 after the sludge feeding. In the initial 76 days, the MLSS level of biological and membrane tanks was in the range of 5.7~9.1 g/L and 6.2~10.0 g/L, respectively. The MLVSS levels in the range of 5.2~8.1 g/L and 5.4~8.6 g/L were obtained for both of tanks. The MLVSS/MLSS ratios were also calculated both in the biological and membrane tanks. In the case of biological reactor, the MLVSS/MLSS ratio which in the range of 0.84~0.95 was obtained and 0.81~0.92 for membrane tank. The system was stable again on day 17 after sludge was withdrawn, at this sludge-withdraw stage, the MLSS level of biological tank was in the range of 5.7~9.1 g/L and 13.3~16.7 g/L for membrane tank.
BOD effluent was remarkably stable and with a highest removal efficiency of 99.3%. COD and SS removal was 95.9% and 100.0%, respectively. The results showed that the BOD volumetric loading of biological tank was in the range of 0.068~4.617 kg BOD5/m3 day and 0.007~0.04 kg BOD5/m3 day for membrane tank. The BOD F/M ratio of biological tank was in the range of 0.07~0.36 kg BOD5/kg MLVSS-day and 0.0005~0.0071 kg BOD5/kg MLVSS-day for membrane tank. COD volumetric loading of biological tank was in the range of 0.099~6.844 kg COD/m3 day and 0.011~0.408 kg COD/m3 day for membrane tank. COD F/M ratio of biological tank was in the range of 0.014~0.65 kg COD/ kg MLVSS-day and 0.003~0.079 kg COD/kg MLVSS-day for membrane tank. The results of specific oxygen uptake rate (SOUR) showed that the SOUR value of biological tank was in the range of 19~75 mg-O2/g MLVSS-hr and 30~81 mg-O2/g MLVSS-hr for membrane tank. The levels of silt density index (SDI) for all effluents were lower than 6.3 indicated the high quality of discharge.
Membrane modules were withdrawn for clogging removal on day 22 and day 96. Chemical cleaning was carried out on day 102 by inside-out type washing. The results of scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) demonstrated that the fouling of membrane outer surface was mainly due to microorganisms. The series fouling membrane showed that foulants of cation ions with high diversity species were observed on the outer surface and less cation ions were detected on the inner surface of membrane. However, the opposite results of cation distributions were obtained for the light fouling membrane. The results of SEM and EDS revealed that there were two mechanisms of membrane fouling in this study, cations accumulation by microorganisms on the outer surface or the deposition of cations on the inner surface of membrane, resulted in the different transmembrane pressure and flux for different membrane modules.
This SAMBR pilot plant was monitored for 114 days. Water sampling and measurement were carried out for system function evaluation on day 219. The results showed that the application of submerged aerobic membrane bioreactor for the treatment of pharmaceutical wastewater is feasible and successful.
中文摘要 I
Abstract IV
誌謝 VII
目錄 IX
表目錄 XIV
圖目錄 XVII

第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 薄膜簡介 4
2-1-1 薄膜的沿革 4
2-1-2 薄膜之材質 6
2-1-3 薄膜各式模組與種類 9
2-1-4 MF薄膜性質與結構 16
2-1-5 薄膜的過濾機制 17
2-2 薄膜之應用 21
2-3 MBR簡介 25
2-4 MBR之種類 28
2-5 MBR薄膜模組結構與特性 33
2-6 MBR之應用優勢 36
2-7 MBR積垢之成因 40
2-8 SMBR預防阻塞之方式 47
2-9 MBR 恢復通量之方式 51
2-10 MBR應用於製藥廢水的處理 54
第三章 實驗設備與研究方法 61
3-1 研究流程 61
3-2 藥品 64
3-2-1 清水試車用藥 64
3-2-2 調勻池廢水酸鹼值調整用藥 64
3-2-3 儀器用藥 65
3-2-4 水質分析用藥 66
3-3 實驗設備與儀器 68
3-3-1 監控檢測設備儀器 68
3-3-2 實驗儀器 68
3-4 分析項目 70
3-5 BET分析方法 71
3-5-1 B.E.T. 等溫吸附理論 71
3-5-2 孔洞大小分佈測定 73
3-5-3 一般MF薄膜物理性質分析 76
3-6 SDI試驗 79
3-6-1 SDI目的與原理 79
3-6-2 SDI測定方法 81
3-7 儀器分析操作設定條件 86
3-8 SEM與EDS 分析 87
3-8-1 SEM與EDS原理 87
3-8-2 SEM與EDS 薄膜前處理 91
3-9 薄膜系統組件之製備 93
3-9-1 薄膜系統選定及組裝 93
3-9-2 相關配套操作 96
3-9-3 薄膜清洗 98
3-10 SAMBR反應槽設計 101
3-10-1 系統反應槽規格 101
3-10-2 SAMBR槽設備系統 102
3-10-3 突發狀況之預防與因應 107
3-11 廢水來源 108
3-11-1 製程廢水 108
3-11-2 水樣採樣與保存 109
3-12 模廠清水操作試驗設計 110
3-12-1 模厰滲漏測試 110
3-12-2 清水混合擴散劑試驗 112
3-12-3 清水追蹤劑試驗 116
3-12-4 污泥馴養期操作 120
第四章 結果與討論 123
4-1 模場滲漏測試 123
4-2 清水混合擴散劑試驗 125
4-3 清水追蹤劑試驗 126
4-3-1 好氧生物槽 126
4-3-2 好氧薄膜生物槽 130
4-4 好氧薄膜生物程序 133
4-4-1 系統微生物變化 133
4-4-2 監測紀錄分析 139
4-4-3 檢測記錄分析 149
4-5 薄膜SEM與EDS之分析 164
4-5-1 膜管之構造 164
4-5-2 薄膜的積垢 168
4-6 綜合討論 186
第五章 結論 203
第六章 未來方向與建議 206
第七章 參考文獻 208
簡歷 218
1. Rosen,M., Welander,T., Lofqvist,A. and Holmgren,J.,“Development of a new process for treatment of a pharmaceutical wastewater”, Wat. Sci. Technol., 37(9), pp.251-258, 1998.
2. Torrens,K. D., Musterman,J. K., and Drohobyczr,A.,“Pharmaceutical wastewater treatment comparison of process scale-up from bench to full scale:a case study ”,Environmental Progress,11(2), pp.104-112, 1992.
3. El-Gohary,F. A., Abou-Elela,S. I.,and Aly,H. I.,“Evaluation of biological technologies for wastewater treatment in the pharmaceutical industry”, Wat. Sci. Technol., 32(11), pp.13-20, 1995.
4. Chen,Y. F., Ng,W. J., Yap,M. G. S.,“Performance of upflow anaerobic biofilter process in pharmaceutical wastewater treatment”, Resourece, Conservation and Recycling, 11(1-4), pp.83-91, 1994.
5. 林瑩峰、荊樹人、李得元、鄭國喜、Wayne Johnson,“利用分批式活性污泥程序處理原料藥製藥廢水”,中華民國環境工程學會第二十五屆廢水處理技術研討會論文集,40-45頁,2000。
6. L. M. Freitas dos Santos and G. Lo Biundo,“Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor.” Environmental Progress(Vol.18,No1), pp.34-39, 1999.
7. 鄭領英、王學松,“膜的高科技應用”,初版,臺北市,五南圖書,2003。
8. Aptel, P. and Buckley C. A.,“ Catergories Of Membrane Operations” Water Treatment Membrane Process, J. Mallevialle,P.E. Odendaal, and M.R. Wiesner, McGraw-Hill, Singapore,1996.
9. Staude E.,“Membrane und membranprozesse. VCH Verlagsgesellschaft”, Weinheim, 1992.
10. Carme G.,Davis R.H.,“Membrane fouling during microfiltration of protein mixtures”,Journal of Membrane Science, Vol.119, pp.269-284, 1996.
11. Berthold G.,“The membrane-coupled activated sludge process in municipal wastewater treatment”,Technomic Publishing Company, Germany, pp.35, 2001.
12. Membrane Products Dept. b. Polyethylene Microporous Hollow Fiber 139 Membrane. Mitsubishi Rayon Co., LTD.
13. Smith,C. V.,Gregorio, D. D. and Talcott, R. M.,“The use of ultrafiltration membranes for activated sludge separation”,24th Annual Purdue Industrial Waste Conference,Purdue University, Lafayette, Indiana, U.S.A., pp.1300-1310, 1969.
14. Shin, H. S., Lee, S. M.,Seo, I. S.,Kim, G. O.,Lim, K. H. and Song, J. S.,“Pilot-scale SBR and MF operation for removal of organic and nitrogen compounds from greywater”,Water Science and Technology, Vol.38, No. 8, pp. 79-88, 1998.
15. Ahn, K. H. and Song, K. G.,“Treatment of domestic wastewater using microfiltration for reuse of wastewater”, Desalination, Vol. 126, No. 1-3, pp.7-14, 1999.
16. Ogoshi, M. and Suzuki, Y.,“Application of membrane separation to an easily installed municipal wastewater treatment plant” International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan,November 1-4, pp. 250-261, 1999.
17. Wummel, J. and Walther, H.,“Membrane technology in municipal wastewater treatment – the case of Markranstädt (Germany)”, IWA world water congress, Berlin, 2001.
18. Koyuncu, I.,Kural, . E. and Topacik, D.,“Pilot scale nanofiltration membrane sepration for waste management in textile industrial”, Water Science and Technology, Vol. 43, No. 10, pp.233-240, 2001.
19. Tenno, R. and Paulapuro H.,“Removal of dissolved organic compounds from paper machine whitewater by membrane bioreactors:a comparative analysis”, Control Engineering Practice, Vol. 7, No. 9, pp.1085-1099, 1999.
20. Mutlu, S. H.,Yetis, U.,Gurkan, T. and Yilmaz, L.,“Decolorization of wastewater of a baker’s yeast plant by membrane processes”, Water Research, Vol.36, No.3, pp.609-616, 2002.
21. Yamamoto, K., Hiasa, M.,Mahmood, T. and Matsuo, T.,“Direct solid–liquidseparation using hollow fiber membrane in an activated sludge aeration tank”, Water Science and Technology, Vol. 21, No. 1, pp.43-54, 1989.
22. Pankhania, M., Brindle, K. and Stephenson, T.,“Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation”, Chemical Engineering Journal, Vol. 73, No. 2, pp.131-136, 1999.
23. Livingston, A. G.,Arcangeli, J. P.,Boam, A. T.,Zhang, S.,Marangon, M. and Freitas, L. M.,“Extractive membrane bioreactors for detoxification of chemical industry wastes:process development”, Journal of MembraneScience, Vol.151, No.1, pp.29-44, 1998.
24. Stephenson, T.,Judd, S.,Jefferson, B. and Brindle, K.,“Membrane bioreactors for wastewater treatment”, London:IWA publishing, 2000.
25. Yamamoto K.,“Membrane filtration. In Rapid Filtration, Biological Filtration and Membrane Filtration”, Gihodo Shuppan, Tokyo, 255, 1994.
26. T. Ueda, K. Hata., Y. Kikuoka., “Wastewater treatment using Membrane Bioreactor ”, Wat. Sci. Technol., 34, 259, 1996.
27. Cho, D., et al., “Biological waste water treatment and membranes, International Specialized Conference on Membrane Technology in Environmental Management”, Tokyo, Japan, 1999.
28. Berthold G. and K. Krauth., “Replacement of Secondary Clarification by Membrane Separation-Results with Tubular , Plate and Hollow Fibre Modules” , Wat. Sci. Tech. 40(4-5), pp. 311-320, 1999.
29. Chiemchaisri C.,Yamamoto K., and Vigneswaran S.,“Household membrane bioreactor in domestic wastewater treatment”, Water Sci. Technol.27(1), pp.171-178, 1993.
30. Stephenson T., Judd S., Jefferson B., Brindle K.,“ Membrane bioreactor for wastewater treatment”, IWA Publishing, London, pp.4, 2000.
31. Ueda T.,Hata T., and Kikuoka Y.,“Treatment of domestic sewage from rural settlements by a membrane bioreactor.” Water Sci. Technol.34, pp.189~196, 1996.
32. Chang, I. S., Lee, C. H., and Ahn, K.-H.,“Membrane filtration Characteristics in membrane coupled activated sludge system:The effect of floc structure of activated sludge on membrane fouling.”Sep. Sci. Technol., 34, pp.1743~1758, 1999.
33. Choo K. H., and Lee C. H.,“Membrane fouling mechanisms in the membrane coupled anaerobic bioreactor.”Water Res.30, pp.1771~1780, 1996.
34. Chang I. S., Clech P. L., Jefferson B., Judd S.,“Membrane fouling in membrane bioreactors for wastewater treatment.” Journal of Environmental Engineering, Vol.128, No.11, 2002.
35. Nagaoka H., Yamanishi S., and Miya A.,“Modeling of biofouling by extracelluar polymers in a membrane separation activated sludge.”, Water Sci. Technol., 38(4-5), pp.479~504, 1998.
36. Chang I. S., and Lee C. H.,“Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling.”, Desalination, 120, pp.221~233, 1998.
37.Le-clech P., Jefferson B.,and Judd S. J.,“Impaction of aeration,solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor.”, J. Membr. Sci.218, pp.117~129, 2003.
38. Rosenberger S., and Kraume M.,“Filterability of activated sludge in membrane bioreactors.”, Desalination,146, pp.373~379, 2002.
39. Lim A. L., and Bai R.,“Membrane fouling and cleaning in microfiltration of activated sludge wastewater.”, J. Membr. Sci.216, pp.279~290, 2003.
40. Nagaoka H., Kono S., Yamanishi S. and Miya A.,“ Influence of Organic Loading Rate on Membrane Fouling in Membrane Separation Activated Sludge Process.”International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, November 1-4, pp. 242-249, 1999.
41. Membrane Products Dept c. Engineering Information. Technical Letter STERAPORE HF, Mitsubishi Rayon Co., LTD.
42. 梁德明、林世民、李勝男等,“製藥業廢水電解氧化法處理程序評估規劃”,工程實務技術研討會論文集,1995。
43. 丁建軍、劉燕群、譚佑銘,“SBR法處理高濃度氯霉素廢水的實驗研究”,環境污染治理技術與設置,第4卷第6期,2003。
44. 魏瑞霞、陳金優,“懸浮填料移動床-SBR工藝處理難降解青霉素製藥廢水的研究”,環境污染治理技術與設置,第4卷第4期,2003。
45. 劉進達、高集華、騰登用、溫吉利,“厭氧-接觸氧化-穩定塘工藝處理化工製藥廢水”,給水與排水,第7期,2003。
46. Dietrich M. J., Copa W. M., Chowdhury A. K., and Randall T. L., “Removal of plollutants from dilute wastewater by the PACT treatment process” Environmental Progress, 7(2), pp.143~149, 1988.
47. 司洪濤、呂冠霖、黃香玫,“氧化技術在高濃度COD 廢水處理之應用”。
48. Isıl Akmehmet Balcıoglu, Merih Ötker, “Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes.”, Chemosphere, 50, pp.85~95, 2003.
49. 張鎮南、何君甫、陳育仁、趙家珍、馬英石,“利用循序式濾膜生物反應槽程序回收廢水之研究”,中國環境工程學刊,第12卷第4期,295~305頁,2002。
50. Tae-Hyun Bae, Sung-Soo Han, Tae-Moon Take, “Membrane sequencing batsh reactor system for the treatment of dairy industry wastewater.” Process Biochemistry, 39, pp.221~231, 2003.
51. Müller E. B., Stouthamber A. H., Versevsld H. W. and Eikelboom D. H.,“Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by crossflow filtration.”, Wat. Res.29, pp.1179~1189, 1995.
52. Rosenberger S., Kraume M. and Szewzyk U.,“Operation of different membrane bioreactor experimental results and physiological state of the microorganisms.”, Proc. IWA Conf. Membrane Technology in Environmental Management, Tokyo, pp.310~316, 1999.
53. Luxmy B. S., Nakajima F. and Yamamoto K.,“Analysis of bacterial community in membrane separation bioreactors by fluorescent by fluorescent in situ hybridization and denaturing gradient gel electrophoresis techniques.”, IWA Conf. Membrane Technology in Environmental Management, Tokyo, pp.302~309, 1999.
54. 孫振龍、陳紹偉、吳志超,“一體式平片膜生物反應器處理抗生素廢水研究”工業用水與廢水,第34卷,第1期,33-38頁,2003。
55. 李丁讚、書鐘輝,“薄膜生物處理製藥廢水之技術”,經濟部台灣環保產業專欄,第17期,11-13頁,2003。
56. Zenon Membrane Solutions, “GE ZeeWeed MBR technology for pharmaceutical wastewater treatment.”, Membrane Technology September, pp7~9, 2006.
57. 黃政賢,“污水工程學”,四刷,台北市:高立圖書,286~287頁,1998。
58. 林曜文,“沉浸式薄膜生物程序處理ABS樹脂廢水之研究”,嘉南藥理科技大學環境工程與科學系碩士論文,2004。
59. D. M. Ruthven,“Principles of adsorption and adsorption process.”, New York:Wiley,1984.
60. S. Lowell and J. E. Shields,“Powder surface srea and prosity.”, 3rd ed., Chapman and Hall, London, 1991.
61. 蔡文田,“含揮發性有機物廢氣之活性碳吸附與觸媒焚化處裡研究”,國立台灣大學環境工程學研究所博士論文,1994。
62. 經濟部工業局,“廢水薄膜處理技術應用與推廣手冊”,初版,台北市:財團法人中技社綠色技術發展中心,11~13頁,2000。
63. 呂金泉,“污水處裡廠規劃設計及操作維護技術手冊”,初版,台北市:曉圓出版社,188~190頁,1991。
64. Chiang, C. F.,“Effects of Reactor Configuration on the Performance of Static-Bed Submerged Media Anaerobic Reactors”, Doctor Dissertation, Iowa State University, 1988.
65. Levenspiel, O.,“Chemical Reaction Engineering, second Edition”,1972.
66. Metcalf & Eddy Inc. Wastewater Engineering:Treatment, Disposal, Reuse, 3rd Ed., McGraw-Hill, Inc., New York, 1991.
67. Schob,P. and Engel H.,“Dar verhalten der nitrification kakerien gegenuber gelostem.”, Archiv Fin Mikrobiolgie., pp.393., 1946.
68. Hall,I. R.,“Some Studies on Nitrification in the Activated Sludge Process.”, J. Wat. Poll. Con. Fed., pp.73-538, 1974.
69. Antoniou,P. ed al., “Effect of Temperature and pH on the Effective Maximum Specific Growth Rate of Nitrifying Bacteria.”, Wat. Res., pp.24-97, 1990.
70. Randall,C. W., “Nitrification built-up in activated sludge resulting from temperature effects”, J. WPCF., 56, pp.1039-1044, 1984.
71. W. Wesley Eckenfelder&Petr Grau,譯者:謝哲松,“活性污泥法之操作控制”,初版,台北市:國立編譯館,5-6頁,1999。
72. 歐陽嶠暉,“下水道工程學”增訂版,台北市:長松出版社,1995。
73. 顧夏聲,“廢水生物處裡數學模式”初版,台北市:曉園出版社,87-92頁,1992。
74. W. J. Ng, Miranda G. S. Yap & M. Sivadas,“Biological treatment of a pharmaceutical wastewater”, Biological wastes 29, pp.299-311, 1989。
75. 李智勇、彭永臻、王淑滢,“高氨氮製藥廢水短程生物脫氮”,化工學報,第54卷,第10期,1482-1485頁,2003。
76. 齊嶸、楊敏、馬文林,“水解酸化-厭氧-好氧法處理NF合成製藥廢水研究”,環境汙染治理技術與設備,第5卷,第8期,57-59頁,2004。
77. 楊挺、張小平,“生物鐵-接觸氧化組合技術處理抗生素類化學製藥廢水的研究”,環境污染與防治,第27卷,第6期,460-464頁,2005。
78. D. Samuel Suman Raj, Y. Anjaneyulu,“Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment”, Process biochemistry 40, pp.165-175, 2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊