(3.236.214.19) 您好!臺灣時間:2021/05/10 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡靜怡
研究生(外文):Ching-Yi
論文名稱:在卵巢切除及睪丸切除的大鼠中對心臟肥大及凋亡療效的探討第一部分Diosgenin對卵巢切除的大鼠心臟肥大及凋亡的影響第二部分睪固酮與運動訓練對睪丸切除的大鼠心臟肥大及凋亡的影響
論文名稱(外文):Therapeutic Effects of Cardiac Hypertrophy and Apoptosis in Ovariectomized and Orchiectomized ratsPartⅠ.Effects of diosgenin on cardiac hypertrophy and apoptosis in ovariectomized ratsPartⅡ.Effects of testosterone replacement and exercise training on ca
指導教授:劉哲育劉哲育引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:108
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部份
女性罹患心臟疾病的時間比男性晚了10至15年左右,過去內生性的雌性素對粥狀動脈硬化及冠狀動脈心血管疾病應具有一定的保護功能,研究也證實停經後的婦女使用荷爾蒙替代療法確實能降低心血管疾病的發生,但卻會有極嚴重的副作用,例如:乳癌。Diosgenin 是結構類似雌性素的植物類固醇皂素,因此我們希望能取代雌性素用在卵巢切除鼠,探討Diosgenin 是否能保護心臟並了解其中的機制?將5-7周齡的Wistar大鼠分成假手術控制組及卵巢切除組,而卵巢切除組則施行卵巢切除一個月,再分別每天每公斤體重餵食0,10,50,100 mg的Diosgenin一個月,再探討心肌細胞的凋亡、存活及肥大等路徑,首先從H&E 染色的心臟切片中發現Diosgenin對卵巢切除鼠的心肌細胞有減緩傷害的情形,而且利用Western Blot也看到卵巢切除所活化的肥大指標蛋白ANP及BNP,又因添加Diosgenin而使蛋白表現下降,另外在誘導肥大的路徑p38、JNK、IL6-MEK5-ERK5等訊息路徑皆可看到相同的結果。在TUNEL assay中觀察到Diosgenin亦可去抑制卵巢切除所產生的心肌細胞凋亡的情形,還利用Western Blot證明心肌細胞凋亡是透過Death receptor及Mitochondria 這兩條路徑,而Diosgenin也會活化ERβ及PI3K/Akt這條路徑來保護卵巢切除的心肌細胞。由以上研究結果我們相信適量Diosgenin具有保護心肌細胞的作用,也許在不久的將來,可以應用在臨床上,並取代雌性素的荷爾蒙替代治療。
第二部份
男性在老化過程中,體內各種荷爾蒙分泌量會逐漸減少,包括雄性素。研究顯示在年老男性體內睪固酮的含量較低,常與冠狀心血管疾病及心肌梗塞的發生有著密切關聯。因此本研究想探討缺乏睪固酮的大鼠中能否藉由運動與補充睪固酮的方式來調控心肌細胞的肥大及凋亡?實驗方法:將7-8周齡的Wistar雄性大鼠,分成進行假手術的控制組(C)及睪丸切除一個月後又分成三組,包括有睪丸切除的控制組(CO)、每日以游泳為運動訓練三小時的睪丸切除組(EO),及運動後30分鐘皮下注射每公斤體重0.2 mg睪固酮(Testosterone) 的睪丸切除組(ETO)。經2週後,待老鼠兩天休息後犧牲,取得心臟並利用心臟切片染色及Western Blotting等實驗進行分析。首先,H&E 染色的心臟切片結果發現,運動訓練與睪固酮補充會降低睪丸切除所誘導的心肌細胞傷害的情形,也可降低被睪丸切除所誘導的心臟肥大指標蛋白BNP的降低,另外在誘導肥大的IL6-MEK5-ERK5訊息路徑也看到相同的結果。此外還發現睪丸切除是透過Death receptor及Mitochondria 這兩條路徑中活化下游Caspase 蛋白的表現來造成心肌細胞凋亡,運動訓練與睪固酮補充也會降低這路徑的蛋白,同時對於MAPK pathway中的p38α及p38β對心肌細胞凋亡與存活亦有相同的影響。因此本研究證實適量的運動訓練及睪固酮有防止心肌細胞的肥大與凋亡,進而達到保護心臟的作用。

Part1.
Background. Very limited information regarding the protective effects of diosgenin on cardiac hypertrophy and apoptosis after post-menopause or bilateral oophorectomy in women was available. The purpose of this study was to evaluate the effects of diosgenin on bilateral ovariectomy induced cardiac hypertrophic and apoptotic pathways. Methods. Forty-six female Wistar rats at 5-7 weeks of age randomly were divided into sham-operated group (Sham),bilateral ovariectomized group (Ovx), and Ovx groups with 10mg/kg, 50mg/kg,or 100mg/kg diosgenin spp.daily (Ovx10, 50, 100) for 1 month. The excised hearts were measured by histopathological analysis, western blotting and RT-PCR, and positive TUNEL assays. Results. Diosgenin spp. Decreased Ovx-induced cardiac abnormalities including abnormal myocardial architecture, enlarged interstitial spaces, and more cardiac TUNEL-positive apoptotic cells. Diosgenin spp. decreased Ovx-induced Fas ligand, Fas death receptors, FADD. Diosgenin spp. decreased Ovx-induced Bad, Bax, activated caspase 9 and activated caspase 3, but increased ERβ, IGF1 receptor, pAkt. Ovx100 exerted less anti-apoptotic than Ovx10 and Ovx50. Conclusions. Diosgenin spp. suppressed ovariectomy-induced cardiac hypertrophy and death receptor-dependent and mitochondria-dependent apoptotic pathway with dose-associated manners. The findings may provide one of possible therapeutic approach for potentially treating or preventing cardiac abnormalities in post-menopause or bilateral oophorectomized women.
Part 2
Background. Aging in men is associated with a progressive decline in the production of several hormones, including androgen. Coronary disease and myocardial infarction often appear in aging men at low levels of testosterone. Objective. To determine the effects of testosterone replacement with exercise training on cardiac hypertrophy and apoptosis. Methods. In this study, twenty-eight male Wistar rats at 7-8 weeks of age randomly were divided into sham-operated control group (C), bilateral orchiectomized group (CO), and CO group with exercise group (EO) and exercise group treated with testosterone (ETO). Rats in exercise group were exercised in 3h/day, 5day/week swimming model and some of them were injected testosterone injections(0.2mg/kg/day) for 2 weeks. The execised hearts were measured by histopathological analysis, western blotting. Results. Exercise training and testosterone spp. decreased CO-induced cardiac abnormalities including abnormal myocardial architecture, enlarged interstitial spaces. Exercise training and testosterone spp. decreased CO-induced BNP, IL6, MEK5 and ERK5, but no significant differences in EO group. Exercise training and testosterone spp. decreased CO-induced TNF , activated caspase 8, tBid, Fas, FADD, Bad, Bak, caspase 9, caspase 3 and p38α. Another exercise training and testosterone spp. increased pBad and p38β. Conclusions. Exercise training and testosterone spp. suppressed orchiectomy-induced cardiac Death receptor-dependent and mitochondria- dependent apoptotic pathway. The findings may provide possible therapeutic approach for potentially treating or preventing cardiac abnormalities in testosterone deficiency men.


第一部份 1
中文摘要 2
Abstract 3
壹、緒論 4
貳、背景介紹 9
参、研究動機 24
肆、實驗方法 25
伍、實驗材料 32
陸、結果 39
第二部分 50
中文摘要 51
Abstract 52
壹、背景介紹 53
貳、研究動機 61
参、實驗材料與方法 62
肆、結果 64
伍、討論 71
陸、參考文獻 77
圖表一 88
圖表二 99


1.Yusuf S, Reddy S, Ôunpuu S, Anand S. Global Burden of Cardiovascular Diseases: Part I: General Considerations, the Epidemiologic Transition, Risk Factors, and Impact of Urbanization. Circulation 2001;104:2746-53.
2.Dubey RK, Imthurn B, Barton M, Jackson EK. Vascular consequences of menopause and hormone therapy: importance of timing of treatment and type of estrogen. Cardiovascular research 2005;66(2):295-306.
3.Rossouw JE. Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovascular research 2002;53(3):550-7.
4.Teede HJ. Hormone replacement therapy and the prevention of cardiovascular disease. Human reproduction update 2002;8(3):201-15.
5.Heinemann V, Parhofer K. [Risk and benefits of hormone replacement therapy by postmenopausal women. WHI-Study]. Der Internist 2003;44(7):896-8.
6.Osborne CK, Zhao HH, Fuqua SAW. Selective Estrogen Receptor Modulators: Structure, Function, and Clinical Use. J Clin Oncol 2000;18:3172-86.
7.Kim JK, Pedram A, Razandi M, Levin ER. Estrogen Prevents Cardiomyocyte Apoptosis through Inhibition of Reactive Oxygen Species and Differential Regulation of p38 Kinase Isoforms. J Biol Chem 2006;281(10):6760–7.
8.Wren BG. The effect of oestrogen on the female cardiovascular system. Med J Aust 1992;157(3):204-8.
9.Hale S, Birnbaum Y, Kloner R. Beta-Estradiol, but not alpha-estradiol, reduced myocardial necrosis in rabbits after ischemia and reperfusion. Am Heart J 1996;132:258-62.
10.Zhai P, Eurell TE, Cotthaus R, Jeffery EH, Bahr JM, Gross DR. Effect of estrogen on global myocardial ischemiareperfusion injury in female rats. Am J Physiol Heart Circ Physiol 2000;279:H2766–H75.
11.Olefsky JM. Nuclear Receptor Minireview Series. J Biol Chem 2001;276(40):36863–4.
12.Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 1986;320:134-9.
13.Saunders PTK. Oestrogen receptor beta(ER beta). Rev Reprod 1998;3:164-71.
14.Gigue`re V, Tremblay A, Tremblay GB. Estrogen receptor beta: Re-evaluation of estrogen and antiestrogen signaling. Steroids 1998;63:335–9.
15.Hall JM, Couse JF, Korach KS. The Multifaceted Mechanisms of Estradiol and Estrogen Receptor Signaling. J Biol Chem 2001;276(40):36869–72.
16.Couse JF, Lindzey J, Grandien K, Gustafsson J-A, Korach KS. Tissue Distribution and Quantitative Analysis of Estrogen Receptor-a (ERalpha) and Estrogen Receptor-beta (ERbeta) Messenger Ribonucleic Acid in the Wild-Type and ERalpha-Knockout Mouse. Endocrinology 1997;138:4613-21.
17.Misiti S, Nanni S, Fontemaggi G, et al. Induction of hTERT Expression and Telomerase Activity by Estrogens in Human Ovary Epithelium Cells. Mol Cell Biol 2000;20(11):3764-71.
18.McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW. Analysis of Estrogen Receptor Function in Vitro Reveals Three Distinct Classes of Antiestrogens. Mol Endocrinol 1995;9:659-69.
19.Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J-A, Nilsson S. Differential Response of Estrogen Receptor alpha and Estrogen Receptor beta to Partial Estrogen Agonists/Antagonists. Mol Pharmacol 1998;54:105-12.
20.McInerney EM, Weis KE, Sun J, Mosselman S, Katzenellenbogen BS. Transcription Activation by the Human Estrogen Receptor Subtype beta (ERbeta) Studied with ERbeta and ERalpha Receptor Chimeras. Endocrinology 1998;139:4513-22.
21.Yen ML, Su JL, Chien CL, et al. Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts. Molecular pharmacology 2005;68(4):1061-73.
22.Scott A, Higdon K, Tucci M, et al. The prevention of osteoporotic progression by means of steroid loaded TCPL drug delivery systems. Biomedical sciences instrumentation 2001;37:13-8.
23.Malinow MR. Effects of synthetic glycosides on cholesterol absorption. Annals of the New York Academy of Sciences 1985;454:23-7.
24.Roman ID, Thewles A, Coleman R. Fractionation of livers following diosgenin treatment to elevate biliary cholesterol. Biochimica et biophysica acta 1995;1255(1):77-81.
25.Ikeda A, Inui K, Fukuta Y, Kokuba Y, Sugano M. Effects of intravenous perilla oil emulsion on nutritional status, polyunsaturated fatty acid composition of tissue phospholipids, and thromboxane A2 production in streptozotocin-induced diabetic rats. Nutrition (Burbank, Los Angeles County, Calif 1995;11(5):450-5.
26.Marian AJ, Roberts R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation 1995;92(5):1336-47.
27.van Bilsen M, Chien KR. Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. Cardiovascular research 1993;27(7):1140-9.
28.Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy. Journal of molecular medicine (Berlin, Germany) 1998;76(11):725-46.
29.Chien KR. Stress pathways and heart failure. Cell 1999;98(5):555-8.
30.Nicol RL, Frey N, Olson EN. From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annual review of genomics and human genetics 2000;1:179-223.
31.Vassiliadis N, Vassiliadis K, Karkavelas G. Sudden death due to cardiac myxoma. Medicine, science, and the law 1997;37(1):76-8.
32.Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. Journal of the American College of Cardiology 1986;7(5):1140-9.
33.Gardner DG. Natriuretic peptides: markers or modulators of cardiac hypertrophy? Trends in endocrinology and metabolism: TEM 2003;14(9):411-6.
34.Chien KR, Zhu H, Knowlton KU, et al. Transcriptional regulation during cardiac growth and development. Annual review of physiology 1993;55:77-95.
35.Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circulation research 2003;92(10):1079-88.
36.Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annual review of physiology 1997;59:551-71.
37.Mukoyama M, Nakao K, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. The Journal of clinical investigation 1991;87(4):1402-12.
38.Hansson GK. Cell-mediated immunity in atherosclerosis. Current opinion in lipidology 1997;8(5):301-11.
39.Lee RT, Libby P. The unstable atheroma. Arteriosclerosis, thrombosis, and vascular biology 1997;17(10):1859-67.
40.Poli V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions. The Journal of biological chemistry 1998;273(45):29279-82.
41.Sturgill TW, Wu J. Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. Biochimica et biophysica acta 1991;1092(3):350-7.
42.Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. The Journal of biological chemistry 1998;273(3):1496-505.
43.Clerk A, Sugden PH. Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. The American journal of cardiology 1999;83(12A):64H-9H.
44.Force T, Pombo CM, Avruch JA, Bonventre JV, Kyriakis JM. Stress-activated protein kinases in cardiovascular disease. Circulation research 1996;78(6):947-53.
45.Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circulation research 1998;83(4):345-52.
46.Abe J, Baines CP, Berk BC. Role of mitogen-activated protein kinases in ischemia and reperfusion injury : the good and the bad. Circulation research 2000;86(6):607-9.
47.Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovascular research 2000;47(1):23-37.
48.Bueno OF, De Windt LJ, Lim HW, et al. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circulation research 2001;88(1):88-96.
49.Lee JD, Ulevitch RJ, Han J. Primary structure of BMK1: a new mammalian map kinase. Biochemical and biophysical research communications 1995;213(2):715-24.
50.Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. The Journal of biological chemistry 1995;270(21):12665-9.
51.English JM, Vanderbilt CA, Xu S, Marcus S, Cobb MH. Isolation of MEK5 and differential expression of alternatively spliced forms. The Journal of biological chemistry 1995;270(48):28897-902.
52.Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. The EMBO journal 1997;16(23):7054-66.
53.Fukuhara S, Marinissen MJ, Chiariello M, Gutkind JS. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras AND Rho-independent pathway. The Journal of biological chemistry 2000;275(28):21730-6.
54.Takeishi Y, Abe J, Lee JD, Kawakatsu H, Walsh RA, Berk BC. Differential regulation of p90 ribosomal S6 kinase and big mitogen-activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts. Circulation research 1999;85(12):1164-72.
55.Kamakura S, Moriguchi T, Nishida E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. The Journal of biological chemistry 1999;274(37):26563-71.
56.Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO journal 2001;20(11):2757-67.
57.Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. The Journal of biological chemistry 1998;273(4):2161-8.
58.Zhu W, Zou Y, Aikawa R, et al. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 1999;100(20):2100-7.
59.Kang YJ, Zhou ZX, Wang GW, Buridi A, Klein JB. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. The Journal of biological chemistry 2000;275(18):13690-8.
60.Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. The Journal of biological chemistry 2000;275(25):19395-400.
61.Craig R, Larkin A, Mingo AM, et al. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. The Journal of biological chemistry 2000;275(31):23814-24.
62.Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC. alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. The Journal of biological chemistry 2000;275(31):23825-33.
63.Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. The New England journal of medicine 1999;341(17):1276-83.
64.Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88(3):347-54.
65.Yamamoto S, Sawada K, Shimomura H, Kawamura K, James TN. On the nature of cell death during remodeling of hypertrophied human myocardium. Journal of molecular and cellular cardiology 2000;32(1):161-75.
66.Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. The New England journal of medicine 1996;335(16):1182-9.
67.Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. The New England journal of medicine 1997;336(16):1131-41.
68.Willingham MC. Cytochemical methods for the detection of apoptosis. J Histochem Cytochem 1999;47(9):1101-10.
69.Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circulation research 1998;82(11):1111-29.
70.Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91(4):479-89.
71.Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997;387(6635):773-6.
72.Rosse T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998;391(6666):496-9.
73.Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science (New York, NY 1998;281(5381):1322-6.
74.Reed JC. Bcl-2 family proteins. Oncogene 1998;17(25):3225-36.
75.Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends in cell biology 1998;8(8):324-30.
76.Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science (New York, NY 1997;275(5302):983-6.
77.Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC. Ion channel activity of the BH3 only Bcl-2 family member, BID. The Journal of biological chemistry 1999;274(31):21932-6.
78.Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94(4):491-501.
79.Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94(4):481-90.
80.Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90(3):405-13.
81.Lee HY, Chun KH, Liu B, et al. Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer research 2002;62(12):3530-7.
82.LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine reviews 1995;16(2):143-63.
83.Werner H, Le Roith D. The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Critical reviews in oncogenesis 1997;8(1):71-92.
84.Nissley P, Lopaczynski W. Insulin-like growth factor receptors. Growth factors (Chur, Switzerland) 1991;5(1):29-43.
85.Lund PK, Moats-Staats BM, Hynes MA, et al. Somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II mRNAs in rat fetal and adult tissues. The Journal of biological chemistry 1986;261(31):14539-44.
86.Murphy LJ, Bell GI, Friesen HG. Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology 1987;120(4):1279-82.
87.Rotwein P, Pollock KM, Watson M, Milbrandt JD. Insulin-like growth factor gene expression during rat embryonic development. Endocrinology 1987;121(6):2141-4.
88.Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. The Journal of clinical investigation 1997;100(8):1991-9.
89.Bishopric NH, Andreka P, Slepak T, Webster KA. Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 2001;1:141-50.
90.Vogel RB, Books CA, Ketchum C, Zauner CW, Murray FT. Increase of free and total testosterone during submaximal exercise in normal males. Medicine and science in sports and exercise 1985;17(1):119-23.
91.Cumming DC, Brunsting LA, 3rd, Strich G, Ries AL, Rebar RW. Reproductive hormone increases in response to acute exercise in men. Medicine and science in sports and exercise 1986;18(4):369-73.
92.Jensen J, Oftebro H, Breigan B, et al. Comparison of changes in testosterone concentrations after strength and endurance exercise in well trained men. European journal of applied physiology and occupational physiology 1991;63(6):467-71.
93.Terjung R. Endocrine response to exercise. Exercise and sport sciences reviews 1979;7:153-80.
94.Tremblay MS, Copeland JL, Van Helder W. Influence of exercise duration on post-exercise steroid hormone responses in trained males. European journal of applied physiology 2005;94(5-6):505-13.
95.English KM, Steeds RP, Jones TH, Diver MJ, Channer KS. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: A randomized, double-blind, placebo-controlled study. Circulation 2000;102(16):1906-11.
96.Ramsay LE, Haq IU, Jackson PR, Yeo WW. The Sheffield table for primary prevention of coronary heart disease: corrected. Lancet 1996;348(9036):1251.
97.Dai WS, Gutai JP, Kuller LH, Laporte RE, Falvo-Gerard L, Caggiula A. Relation between plasma high-density lipoprotein cholesterol and sex hormone concentrations in men. The American journal of cardiology 1984;53(9):1259-63.
98.Lichtenstein MJ, Yarnell JW, Elwood PC, et al. Sex hormones, insulin, lipids, and prevalent ischemic heart disease. American journal of epidemiology 1987;126(4):647-57.
99.Hamalainen E, Adlercreutz H, Ehnholm C, Puska P. Relationships of serum lipoproteins and apoproteins to sex hormones and to the binding capacity of sex hormone binding globulin in healthy Finnish men. Metabolism: clinical and experimental 1986;35(6):535-41.
100.Hromadova M, Hacik T, Malatinsky E, Riecansky I. Alterations of lipid metabolism in men with hypotestosteronemia. Hormone and metabolic research Hormon- und Stoffwechselforschung 1991;23(8):392-4.
101.Heller RF, Wheeler MJ, Micallef J, Miller NE, Lewis B. Relationship of high density lipoprotein cholesterol with total and free testosterone and sex hormone binding globulin. Acta endocrinologica 1983;104(2):253-6.
102.Simon D, Charles MA, Nahoul K, et al. Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: The Telecom Study. The Journal of clinical endocrinology and metabolism 1997;82(2):682-5.
103.Haffner SM, Mykkanen L, Valdez RA, Katz MS. Relationship of sex hormones to lipids and lipoproteins in nondiabetic men. The Journal of clinical endocrinology and metabolism 1993;77(6):1610-5.
104.Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men. A prospective population-based study. Circulation 1988;78(3):539-45.
105.Barrett-Connor E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Annals of internal medicine 1992;117(10):807-11.
106.Zgliczynski S, Ossowski M, Slowinska-Srzednicka J, et al. Effect of testosterone replacement therapy on lipids and lipoproteins in hypogonadal and elderly men. Atherosclerosis 1996;121(1):35-43.
107.Meriggiola MC, Marcovina S, Paulsen CA, Bremner WJ. Testosterone enanthate at a dose of 200 mg/week decreases HDL-cholesterol levels in healthy men. International journal of andrology 1995;18(5):237-42.
108.Dobs AS, Bachorik PS, Arver S, et al. Interrelationships among lipoprotein levels, sex hormones, anthropometric parameters, and age in hypogonadal men treated for 1 year with a permeation-enhanced testosterone transdermal system. The Journal of clinical endocrinology and metabolism 2001;86(3):1026-33.
109.Tenover JS. Effects of testosterone supplementation in the aging male. The Journal of clinical endocrinology and metabolism 1992;75(4):1092-8.
110.Kirkland RT, Keenan BS, Probstfield JL, et al. Decrease in plasma high-density lipoprotein cholesterol levels at puberty in boys with delayed adolescence. Correlation with plasma testosterone levels. Jama 1987;257(4):502-7.
111.Phillips GB, Jing TY, Resnick LM, Barbagallo M, Laragh JH, Sealey JE. Sex hormones and hemostatic risk factors for coronary heart disease in men with hypertension. Journal of hypertension 1993;11(7):699-702.
112.Pugh PJ, Jones TH, Channer KS. Acute haemodynamic effects of testosterone in men with chronic heart failure. European heart journal 2003;24(10):909-15.
113.Hak AE, Witteman JC, de Jong FH, Geerlings MI, Hofman A, Pols HA. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. The Journal of clinical endocrinology and metabolism 2002;87(8):3632-9.
114.Hanke H, Lenz C, Hess B, Spindler KD, Weidemann W. Effect of testosterone on plaque development and androgen receptor expression in the arterial vessel wall. Circulation 2001;103(10):1382-5.
115.Kohchi K, Takebayashi S, Hiroki T, Nobuyoshi M. Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation 1985;71(4):709-16.
116.Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994;90(2):775-8.
117.Gornstein RA, Lapp CA, Bustos-Valdes SM, Zamorano P. Androgens modulate interleukin-6 production by gingival fibroblasts in vitro. Journal of periodontology 1999;70(6):604-9.
118.Khosla S, Atkinson EJ, Dunstan CR, O''Fallon WM. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. The Journal of clinical endocrinology and metabolism 2002;87(4):1550-4.
119.Kuntzleman CT, Reiff GG. The decline in American children''s fitness levels. Research quarterly for exercise and sport 1992;63(2):107-11.
120.Sallis JF, McKenzie TL. Physical education''s role in public health. Research quarterly for exercise and sport 1991;62(2):124-37.
121.Oja P. Descriptive epidemiology of health-related physical activity and fitness. Research quarterly for exercise and sport 1995;66(4):303-12.
122.Rowland TW. Developmental aspects of physiological function relating to aerobic exercise in children. Sports medicine (Auckland, NZ 1990;10(4):255-66.
123.Paffenbarger RS, Jr., Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. The New England journal of medicine 1986;314(10):605-13.
124.Garcia-Palmieri MR, Costas R, Jr., Cruz-Vidal M, Sorlie PD, Havlik RJ. Increased physical activity: a protective factor against heart attacks in Puerto Rico. The American journal of cardiology 1982;50(4):749-55.
125.Schmidt JA, Borgstrom P, Intaglietta M. Neurogenic modulation of periodic hemodynamics in rabbit skeletal muscle. J Appl Physiol 1993;75(3):1216-21.
126.Wilmore JH, McNamara JJ. Prevalence of coronary heart disease risk factors in boys, 8 to 12 years of age. The Journal of pediatrics 1974;84(4):527-33.
127.Bryan G, Ward A, Rippe JM. Athletic heart syndrome. Clinics in sports medicine 1992;11(2):259-72.
128.Maron BJ. Structural features of the athlete heart as defined by echocardiography. Journal of the American College of Cardiology 1986;7(1):190-203.
129.Mitchell JH, Haskell WL, Raven PB. Classification of sports. Journal of the American College of Cardiology 1994;24(4):864-6.
130.Ragosta M, Crabtree J, Sturner WQ, Thompson PD. Death during recreational exercise in the State of Rhode Island. Medicine and science in sports and exercise 1984;16(4):339-42.
131.Rich BS. Sudden death screening. The Medical clinics of North America 1994;78(2):267-88.
132.Lesauskaite V, Valanciute A. Causes of sudden cardiac death in young athletes: the role of hypoperfusion. Am J Forensic Med Pathol 1998;19(2):157-61.
133.Kraemer WJ, Loebel CC, Volek JS, et al. The effect of heavy resistance exercise on the circadian rhythm of salivary testosterone in men. European journal of applied physiology 2001;84(1-2):13-8.
134.Nindl BC, Kraemer WJ, Gotshalk LA, et al. Testosterone responses after resistance exercise in women: influence of regional fat distribution. International journal of sport nutrition and exercise metabolism 2001;11(4):451-65.
135.Bonnefoy M, Kostka T, Patricot MC, Berthouze SE, Lacour JR. Lack of correlation between 6-month fluctuations in habitual physical activity and testosterone.Concentrations in elderly subjects. The Journal of sports medicine and physical fitness 2001;41(1):78-82.
136.Nishigaki K, Minatoguchi S, Seishima M, et al. Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. Journal of the American College of Cardiology 1997;29(6):1214-20.
137.Kumar D, Jugdutt B. Apoptosis and oxidants in the heart. J Lab Clin Med 2003;142(5):288-97.
138.Fimmel S, Zouboulis CC. Influence of physiological androgen levels on wound healing and immune status in men. Aging Male 2005;8(3-4):166-74.
139.Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocrine reviews 2003;24(3):313-40.
140.van Empel VP, De Windt LJ. Myocyte hypertrophy and apoptosis: a balancing act. Cardiovascular research 2004;63(3):487-99.
141.Paffenbarger RS, Jr., Wing AL, Hyde RT. Physical activity as an index of heart attack risk in college alumni. American journal of epidemiology 1978;108(3):161-75.
142.Hambrecht R, Erbs S, Linke A, Gielen S. [Physical exercise in older patients with chronic heart failure]. Deutsche medizinische Wochenschrift (1946) 2005;130(12):710-6.
143.Eklund KE, Hageman KS, Poole DC, Musch TI. Impact of aging on muscle blood flow in chronic heart failure. J Appl Physiol 2005;99(2):505-14.
144.Cheitlin MD. Cardiovascular physiology-changes with aging. The American journal of geriatric cardiology 2003;12(1):9-13.
145.Bernecker OY, Huq F, Heist EK, Podesser BK, Hajjar RJ. Apoptosis in heart failure and the senescent heart. Cardiovascular toxicology 2003;3(3):183-90.
146.Ling S, Dai A, Williams MR, et al. Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology 2002;143(3):1119-25.
147.Verzola D, Gandolfo MT, Salvatore F, et al. Testosterone promotes apoptotic damage in human renal tubular cells. Kidney international 2004;65(4):1252-61.
148.Zaugg M, Jamali NZ, Lucchinetti E, et al. Anabolic-androgenic steroids induce apoptotic cell death in adult rat ventricular myocytes. Journal of cellular physiology 2001;187(1):90-5.
149.Zhang H, Zhu Z, Liu L, et al. Upregulation of Fas and FasL expression in testosterone-induced apoptosis of macrophages. Methods and findings in experimental and clinical pharmacology 2003;25(10):779-84.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔