跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 17:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王雯萱
研究生(外文):Wen-Hsuan
論文名稱:老鼠同源箱基因Eso-3 (Irxl1)分子特性及功能分析
論文名稱(外文):Molecular characterization and functional analysis of a mouse homeobox gene:Eso-3 (Irxl1)
指導教授:王淑紅
指導教授(外文):Sue-Hong Wang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
同源箱基因(homeobox genes)是一群重要的具有轉錄調節能力的基因,此基因群可藉由轉譯出具有同源箱區的蛋白質(homeodomain proteins)來調控胚胎發育過程的細胞分化及決定細胞的命運。根據同源箱區具有的高度保留性氨基酸序列來設計退化性核酸引子(degenerated oligonucleotide primers),以polymerase chain reaction (PCR)的方式篩選小鼠胚胎幹細胞cDNA基因庫,選殖後找到的其中一個新的同源箱基因-Eso-3 (Embryonic stem cell and ovary expressed gene-3)。將Eso-3同源箱區氨基酸序列與NCBI資料庫進行比對,發現與Iroquois同源箱次家族蛋白質具有最高的58%相似性,根據其同源箱區在α-螺旋Ⅰ及α-螺旋Ⅱ間多出三個氨基酸proline-tyrosine -proline之特性,因此將Eso-3歸類為TALE家族的新成員。利用資料庫比對分析及rapid amplification of cDNA ends實驗結果,發現Eso-3基因具有三種轉錄物,共可轉譯出兩種蛋白質。以reverse transcription-PCR (RT-PCR)進行Eso-3基因表現分析,得知此基因表現於成熟小鼠的各種組織中,主要表現於卵巢及腦。而分析不同發育時期的卵巢,發現Eso-3基因隨著卵巢組織的發育,表現量有遞增的趨勢。以原位雜交技術分析的結果顯示Eso-3表現在成熟卵巢組織的不同發育時期之濾泡細胞中。而在睪丸組織中,Eso-3基因隨著發育的成熟,表現量有下降的趨勢,以原位雜交技術分析結果顯示Eso-3基因表現於史托立細胞(sertoli cell)及精母細胞(spermatocyte)中。由以上結果推論Eso-3基因在生殖系統的發育中扮演重要的角色。除此之外,為了更近一步了解Eso-3在小鼠中的功能為何,目前已成功建立基因轉殖鼠表現Eso-3 small interference RNA (siEso-3),以抑制Eso-3蛋白質在小鼠中的表現。以西方墨點法分析TG23 siEso-3基因轉殖鼠各組織之蛋白質萃取液,發現在大腦中Eso-3蛋白質的表現量有明顯的減少,此外,統計結果顯示siEso-3基因轉殖鼠可能有生殖或遺傳的障礙。對於siEso-3基因轉殖可能造成的生殖或遺傳方面的影響需要進一步研究。

The homeobox gene products act as transcription factors during animal developmental process.These genes encode homeodomain proteins that play a foundamental role in cellular differentiations and determination of cell fate. We performed a degenerated oligonucleotide polymerase chain reaction (PCR) to screen a mouse embryonic stem (ES) cell cDNA library and isolated several novel homeobox-containing genes. One of these genes, which we detected expressions in ES cells and ovary named as Eso-3, encodes a homeodomain protein that has the highest amino acid sequence identity (58%) to Iroquois subclass homeodomain gene product. That three extra amino acid residues, proline-tyrosine-proline, exist in the loop between alpha helixⅠand helix Ⅱ of the homeodomain, suggests that Eso-3 is a new member of TALE class homeobox genes. By a combination of techniques including rapid amplification of cDNA ends and EST database searching, we found that Eso-3 has 3 different transcripts and 2 different open reading frames. From the results of reverse transcription (RT)-PCR, we identified that Eso-3 expressed in all tested mouse tissues and predominantly expressed in ovary and brain. Results of RT-PCR also revealed that Eso-3 expressions in ovaries started at embryonic stage day 12.5 and continuing to the adult stage. The Eso-3 expressions in ovary were gradually increased during ovary development. Results of in situ hybridization showed that Eso-3 expressions in adult ovary were detected in the somatic cells of follicles, but not in the theca cells. In testis, results of RT-PCR revealed that Eso-3 expressions were gradually decreased from embryonic stage day 12.5 to the adult stage. Results of in situ hybridization showed that Eso-3 expressions were detected in sertoli cells and some spermatocytes of adult testis. Based on our finding, we suggest that Eso-3 play a role during development of the reproduction system. Furthermore, we generated gene knockdown transgenic mice expressing Eso-3 small interference RNA (siEso-3) to inhibit Eso-3 protein expressions in mice for investigating the in vivo functions of Eso-3 protein. Reduced expressions of Eso-3 protein levels in brain of TG23 siEso-3 transgenic mouse were observed by western analysis. The statistic results showed a significant decrease of fertility and/or inheritance in siEso-3 transgenic mice than wild-type mice. The relationship between knockdown of Eso-3 expression and mouse fertility and/or inheritance will need further analyses.

目錄

頁次
一. 摘要
中文摘要-------------------------1
英文摘要-------------------------3
二. 前言-----------------------------5
三. 材料與方法----------------------12
四. 結果----------------------------25
五. 討論----------------------------35
六. 圖表----------------------------44
七. 參考文獻------------------------68
八. 附錄----------------------------72
九. 附圖----------------------------77







Anderson, D.M., Arredondo, J., Hahn, K., Valente G., Martin, J.F., Wilson-Rawls, J. and Rawls, A. (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev. Dyn. 113, 792-801.

Banerjee-Basu, S. and Baxevanis, A.D. (2001). Molecular evolution of the homeodomain family of transcription factors. Nucl. Acids Res. 29, 3258-3269.
Bertolino, E., Reimund, B., Wildt-Perinic, D. and Clerc, R.G. (1995). A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J. Biol. Chem. 270, 31178-31188.
Brooke, N.M., Garcia-Fernandez, J. and Holland, P.W.H. (1998). The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392, 920-922.
Bruneau, B.G., Bao, Z.Z., Fatkin, D., Xavier-Neto, J., Georgakopoulos, D., Maguire, C.T., Berul, C.I., Kass, D.A., Kuroski-de Bold, M.L. and de Bold, A.J. (2001). Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol. Cell. Biol. 21, 1730-1736.
Burglin, T.R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucl. Acids Res. 25, 4173-4180.
Cavodeassi, F., Modolell, J. and Gomez-Skarmeta, J.L. (2001). The Iroquois family of genes: from body building to neural patterning. Development 128, 2847-2855.
Gehring, W.J. (1987). Homeo boxes in the study of development. Science 236, 1245-1252.
Gehring, W.J., Qian, Y.Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A.F., Resendez-Perez, D., Affolter, M., Otting, G. and Wuthrich, K. (1994). Homeodomain-DNA recognition. Cell 78, 211-223.
Gòmez-Skarmeta, J.L., del Corral, R.D., de la Calle-Mustienes, E., Ferre-Marco, D. and Modolell, J. (1996). Araucan and caupolican, two members of the novel Iroquois complex, encode homeoproteins that control proneural and vein-formation genes. Cell. 85, 95-105.
Gomez-Skarmeta, J.L. and Modolell, J. (2002). Iroquois genes: genomic organization and function in vertebrate neural development. Curr. Opin. Genet. Dev. 12, 403-408.
Grillenzoni, N., van Helden, J., mbly-Chaudiere, C. and Ghysen, A. (1998). The iroquois complex controls the somatotopy of drosophila notum mechanosensory projections. Development 125, 3563-3569.
Guigon, C.J. and Magre, S. (2006). Contribution of germ cells to the differentiation and maturation of the ovary:insights from models of germ cell depletion. Biol. reprod. 74, 450-458.
Houweling, A.C., Dildrop, R., Peters, T., Mummenhoff, J., Moorman, A.F.M., Ruther, U. and Christoffels, V.M. (2001). Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech. Dev. 107, 169-174.
Kania, A., Johnson, R.L. and Jessell, T.M. (2000). Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102, 161-173.

Kappen, C. (2000). Analysis of a complete homeobox gene repertoire: Implications for the evolution of diversity. Proc. Natl. Acad. Sci. USA. 97, 4481-4486.
Kappen, C., Schughart, K. and Ruddle, F.H. (1993). Early evolutionary origin of major homeodomain sequence classes. Genomics 18, 54-70.
Kehl, B.T., Cho, K.O. and Choi, K.W. (1998). Mirror, a drosophila homeobox gene in the Iroquois complex, is required for sensory organ and alula formation. Development 125, 1217-1227.
Levine, M. and Hoey, T. (1988). Homeobox proteins as sequence-specific transcription factors. Cell 55, 537-540.
Lewis, E.B. (1998). The bithorax complex: the first fifty years. Int. J. Dev. Biol. 42, 403-415

Li, H., Huang, C.J. and Choo, K.B. (2002). Expression of homeobox genes in cervical cancer. Gynecol Oncol 84, 216-221.

Liu, H., Liu, W., Maltby, K.M., Lan, Y. and Jiang, R. (2006). Identification and developmental expression analysis of a novel homeobox gene closely linked to the mouse Twirler mutation. Gene Expr. Patterns 6, 632-636.
Matsui, T., Hirai, M., Hirano, M. and Kurosawa, Y. (1993). The HOX complex neighbored by the EVX gene, as well as two other homeobox-containing genes, the GBX-class and the EN-class, are located on the same chromosomes 2 and 7 in humans. FEBS Letters 336, 107-110.
McGinnis, W., Garber, R.L., Wirz, J., Kuroiwa, A. and Gehring, W.J. (1984). A homologous protein-coding sequence in drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403-408.
Peichel, C.L., Prabhakaran, B. and Vogt, T.F. (1997). The mouse Ulnaless mutation deregulates posterior HoxD gene expression and alters appendicular patterning. Development 124, 3481-3492.
Pepling, M.E. (2006). From primordial germ cell to primordial follicle:mammalian female germ cell development. Genesis 44, 622-632.

Peters, T., Dildrop, R., Ausmeier, K. and Ruther, U. (2000). Organization of mouse iroquois homeobox genes in two clusters suggests a conserved regulation and function in vertebrate development. Genome Res. 10, 1453-1462.
Ranganayakulu, G., Elliott, D.A., Harvey, R.P. and Olson, E.N. (1998). Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 125, 3037-3048.
Scott, M.P. (1993). A rational nomenclature for vertebrate homeobox (HOX) genes. Nucl. Acids Res. 21, 1687-1688.
Takeuchi, J.K. and Bruneau, B.G. (2007). Irxl1, a divergent Iroquois homeobox family transcription factor gene. Gene Expr. Patterns 7, 51-56.
Tsukamoto, H., Takizawa, T., Takamori, K.,Ogawa, H. and Araki, Y. (2007). Genomic organization and structure of the 5’-flanking region of the TEX101 genes: alternative promoter usage and splicing generate transcript variants with distinct 5’-untranslated region. Mol. Reprod. Dev. 74, 154-162.
Vollmer, J.Y. and Clerc, R.G. (1998). Homeobox genes in the developing mouse brain. J. Neurochem. 71, 1-19.
Walther, C. and Gruss, P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435-1449.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top