(3.230.154.160) 您好!臺灣時間:2021/05/08 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許績男
研究生(外文):Ji-Nan
論文名稱:細胞激素在兒童泌尿道感染與腎臟結疤上所扮演的角色
論文名稱(外文):The Role of Cytokines in Urinary Tract Infection and Renal Scarring in Children
指導教授:呂克桓呂克桓引用關係
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:89
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:泌尿道的感染在嬰幼兒期是一種常見的細菌性感染疾病。先前的研究報告顯示在十歲以前的兒童,其泌尿道感染的發生率約為2-8%/每人每年。在罹患泌尿道感染且伴有發燒的病中,若同時使用腎臟同位素核子掃描(99mTc-dimercaptosuccinic acid)來檢查所有的病童,則顯示有高達55-75%的兒童其腎臟實質組織會出現急性發炎的病灶。並且其中約有將近10-65%的病童最後會導致永久性的腎臟細胞的傷害與腎臟結疤(renal scarring)的產生。且一旦形成了廣泛的腎臟結疤其可能後續出現的併發症包括高血壓、蛋白尿與腎功能的異常甚或衰竭等的發生。其中約有10-24%的兒童最後可能因此慢慢進展到慢性腎衰竭或尿毒症等所謂末期腎臟疾病(end-stage renal disease)的病況。細胞激素如介白素interleukin-(IL)1β、IL-6 與IL-8 等在人體遭受細菌感染後所引起的一連串發炎反應過程中扮演了一個很重要的角色。然而有關到底是何種細胞激素參與了兒童泌尿道感染的急性期炎症反應與後續腎臟結疤的形成,目前有關這個領域研究探討的文獻報告並不多且結果互異仍有爭議。我們設計此研究計畫的目的是希望探討在罹患第一次發燒性泌尿道感染的病童中,以腎臟同位素核子掃瞄來確認所有屬於急性腎盂腎炎的兒童。並檢查急性腎盂腎炎的病童其急性期血液或尿液中細胞激素IL-1β、IL-6 與 IL-8 等的濃度反應;另外亦探討這些細胞激素和發炎反應標記、膀胱輸尿管迴流及後續形成腎臟結疤之間存在的關聯性。
研究方法:本研究計畫依照所探討細胞激素種類的不同分為兩大部分:1)IL-6 與IL-8 的研究: 收集了78 個嬰幼兒(年齡從一個月到十歲)符合診斷為罹患第一次發燒性泌尿道感染的住院病童。測量發炎反應標記包括發燒、C-反應性蛋白質(CRP)與周邊白血球數等以及血清與尿液中IL-6 與 IL-8 在這些泌尿道感染病童的變化。所有收案病童第一次的尿液與血液檢體的收集是在住院後抗生素使用前,第二次尿液與血液檢體的收集則是在接受治療10-14 天後再收集。所有收案病童在住院的第一星期內安排腎臟超音波與腎臟核子掃描檢查。排尿性膀胱尿道攝影檢查則是在治療完成後一至二個星期後再施行。依照腎臟核子掃瞄結果,將78 個病童分為兩組,一組符合急性腎盂腎炎的診斷(n = 42);另一組則屬於下泌尿道感染(n = 36),並另外收集20 個為其它各種發燒性疾病的住院病童與12 個健康兒童作為對照組。尿液與血液中的細胞激素濃度是以enzyme-linked immunosorbent assay (ELISA)的方法來測量。追蹤性腎臟核子掃瞄則是在第一次腎臟感染六至十二個月後再施行一次以偵測是否有腎臟結疤的存在。 2)IL-1β 的研究: 收集了75 個嬰幼兒
(年齡從1-121 個月) 且符合診斷為第一次發燒性泌尿道感染的住院病童。探討尿液IL-β 濃度和發炎反應標記包括發燒、CRP、
周邊白血 球數與嗜中性球數等在這些泌尿道感染病童的變化與相互關係。所有收案病童第一次的尿液或血液檢體的收集是在住院後使用抗生素治療前第二次尿液檢體的收集則是在接受治療10-14 天後再收集。並依照腎臟核子掃瞄確認的結果,75 個病童再分為兩組,一組為急性腎盂腎炎(n = 41);另一組則屬於下泌尿道感染(n = 34),另外收集20 個其它各種發燒性疾病的住院病童作為對照組。罹患腎臟感染的這組病童則於六至十二個月後再施行一次追蹤性腎臟核子掃瞄以偵測是否出現了腎臟結疤。
研究結果: 1)血清與尿液IL-6 與IL-8 的研究:急性腎盂腎炎病童的發燒程度、CRP 值、周邊白血球數均明顯的高於下泌尿道感染病童(P <0.001)。急性腎盂腎炎病童其急性期血清與尿液中IL-6 與IL-8 的濃度皆顯著的高於下泌尿道感染病童、非腎臟的發熱性疾病的病童與健康兒童(P <0.001)。治療前後IL-6 與IL-8 濃度變化的比較,急性腎盂腎炎病童與下泌尿道感染病童其治療前血清與尿液中
IL-6 與IL-8 的濃度也都顯著的高於治療後的濃度(P <0.001)。在接受追蹤性腎臟核子掃瞄檢查的39 個急性腎盂腎炎病童中,偵測到其中的12 個病童(30.8%)出現了腎臟結疤。而這些有腎臟結疤的病童,我們發現其急性期血清與尿液中IL-6的濃度顯著的高於其他沒有腎臟結疤的病童(P <0.05 與 P <0.01)。並且有腎臟結疤的病童其平均年齡亦顯著的小於其他沒有腎臟結疤的病童(P <0.05)。 2)尿液IL-1β 的研究:急性腎盂腎炎病童的發燒程度、CRP 值、周邊白血球數與嗜中性白血球數均顯著的比下泌尿道感染病童(P <0.001)。急性腎盂腎炎病童其急性期尿液中IL-1β 的濃度顯著的高於下泌尿道感染病童與其他發燒性疾病的病童(P <0.001)。急性腎盂腎炎病童與下泌尿道感染病童兩者治療前尿液中IL-1β 的濃度也都顯著的高於治療後的濃度(P <0.001)。尿液中IL-1β 的濃度與發燒、CRP周
邊白血球數、嗜中性白血球數與尿液中白血球數(leucocyturia)均呈現顯著的正相關。在接受追蹤性腎臟核子掃瞄檢查的41 個急性腎盂腎炎病童中,偵測到其中12 個病童(29.3%)最後出現了腎臟結疤。而在這些有腎臟結疤的病童中,其急性期尿液中IL-1β 的濃度顯著的低於其他沒有腎臟結疤的病童(P <0.01)。
研究結論:本研究結果顯示在急性腎盂腎炎病童其發燒程度、CRP 值、周邊白血球數與嗜中性白血球數均顯著的高於下泌尿道感染病童。急性期血清或尿液中的IL-1β、IL-6 或IL-8 的濃度顯著的上升可作為診斷兒童罹患第一次發熱性急性腎盂腎炎的一個有用且可信賴的診斷標記。年齡較小的嬰幼兒罹患急性腎盂腎炎後其發生腎臟結疤的危險性增加。在急性腎盂腎炎病童,其急性期尿液中的IL-1β
和血清與尿液中的IL-6 的濃度變化可作為預測後續發生臟結疤的危險指標。

Backgrounds and Objectives: Urinary tract infection (UTI) is a common clinical disorder in younger infants and children. The cumulative incidence of UTIs has been reported to be 2-8% by 10 years of age. Isotope uptake studies with 99mTc-dimercaptosuccinic acid (DMSA) scan have shown that the renal parenchyma is affected in about 55-75% of children with febrile UTI. Approximately 10-65% of these children may result in permanent renal damage and renal scarring after the infection. Further, renal scarring later in life may lead to the development of subsequent hypertension, proteinuria and renal insufficiency that is one of the major causes of end-stage renal disease in many countries. The inflammatory cytokines interleukin (IL)-1β, IL-6 and IL-8 play an important role in response to bacterial infection and the progression of renal inflammation. However, there have been relatively few studies of the role of these cytokines in children with acute pyelonephritis and subsequent renal scarring. The aims of this prospective study were to investigate the IL-1β, IL-6 and IL-8 responses in children with first-time acute pyelonephritis confirmed by DMSA scan, and also to evaluate the relationships of cytokines with other inflammatory markers, vesicoureteral reflux as well as renal
scarring.
Methods: The protocol was designed into two parts according to the variety of cytokines: 1) A total of 78 children aged 1 month to 10 years with a diagnosis of first-time febrile UTI were included. The following inflammatory markers were
assessed: fever; white blood cells (WBC) count; C-reactive protein (CRP); as well as serum and urine IL-6 and IL-8. Serum and urine samples were collected for IL-6 and IL-8 measurements by enzyme-linked immunosorbent assay (ELISA) before and after antibiotic treatment of the infection. All children underwent renal ultrasound examination and DMSA scan for detection of anomalies of the urinary tract and the
presence of pyelonephritic lesions within the first 1 week of hospitalization. The patients were divided into the acute pyelonephritis group (n = 42) and the lower UTI group (n = 36) according to the results of DMSA scans. We also collected 20 children with other febrile illnesses and 12 healthy children with age- and sex-matched served as conntrols. Follow-up DMSA scans were performed again at 6-12 months after the initial infection to detect renal scarring. 2)A total of 75 children aged 1-121 months with
a diagnosis of first-time febrile UTI were studied. The following inflammatory markers were assessed: fever; CRP; WBC count; neutrophil count; and urine IL-1β. Urine samples were collected for IL-1β measurement by ELISA before and after antibiotic treatment of the infection. The 75 children were divided into acute pyelonephritis (n = 41) and lower UTI (n = 34) groups according to the findings of
DMSA scans. Follow-up DMSA scan was performed at 6-12 months after the acute pyelonephritis to detect renal scarring. Twenty children with other febrile illnesses served as non-renal febrile controls.
Results: 1) Serum and urine IL-6 and IL-8 studies: Fever, WBC count and CRP levels were significantly higher in children with acute pyelonephritis than in those with lower UTI (all P &lt;0.001). There were significant differences in the initial serum and urine levels of IL-6 and IL-8 among the children with acute pyelonephritis and lower UTI and non-renal febrile controls and healthy controls (all P &lt;0.001). Compared to post treatment, the initial serum and urine IL-6 and IL-8 levels were significantly higher for both the acute pyelonephritis (P &lt;0.001) and lower UTI groups (P &lt;0.001). Renal scarring was detected at the follow-up DMSA scans in 12 (30.8%) of the 39 children with follow-up DMSA scans. Both serum and urine IL-6 levels during the acute phase of pyelonephritis were significantly higher in the children with renal scarring than in those without (P &lt;0.05 and P &lt;0.01, respectively). The mean age of children with renal scarring was significantly lower compared to those without (P &lt;0.05). 2) Urine IL-1β study: Fever, WBC count, neutrophil count and CRP were significantly higher in the children with acute pyelonephritis than in those with lower UTI (all P &lt;0.001). The initial urine IL-1β levels of children with acute pyelonephritis were significantly higher when compared with lower UTI and non-renal febrile controls (P &lt;0.001). The children with acute pyelonephritis had significantly higher initial urine IL-1β levels than after appropriate antibiotic treatment (P &lt;0.001). Urine IL-1β in children with acute pyelonephritis was positively correlated with fever, CRP, WBC, neutrophil and leucocyturia. Renal scarring wasfound in 12 (29.3%) of the 41 children with acute pyelonephritis. Initial urine IL-1β levels were significantly lower in children with renal scarring than in those without renal scarring (P &lt;0.01).
Conclusions: These results demonstrate that systemic inflammatory markers (fever, CRP, WBC count and neutrophil count) were significantly higher in children with acute pyelonephritis than in those with lower UTI. Serum or urine IL-1β, IL-6 and IL-8 levels are useful diagnostic markers for early recognition of acute pyelonephritis in febrile children. Furthermore, our findings demonstrate that in young children with first-time acute pyelonephritis, elevations of the acute-phase serum and urine IL-6 levels were correlated with the development of subsequent renal scarring. Our results also indicate that acute urine IL-1β level might be used as a predictor of later renal scarring.

Contents
Abstract in Chinese------------------------------------------------------------------------1
Abstract in English-------------------------------------------------------------------------5
Chapter 1. Introduction 9
1.1. Backgrounds-----------------------------------------------------------------------------9
1.2. DMSA Scintigraphy-------------------------------------------------------------------10
1.3. Proinflammatory Cytokines in UTI--------------------------------------------------12
1.3.1. IL-1β--------------------------------------------------------------------------------12
1.3.2. IL-6---------------------------------------------------------------------------------14
1.3.3. IL-8---------------------------------------------------------------------------------15
1.4. The Objectives of This Study--------------------------------------------------------16
Chapter 2. Methods and Materials 17
2.1. Subjects and Study Design for IL-6 and IL-8--------------------------------------17
2.2. Subjects Selection and Study Design for IL-1β------------------------------------18
2.3. Laboratory Analysis--------------------------------------------------------------------18
2.4. Renal Scintigraphy Study-------------------------------------------------------------19
2.4.1. DMSA protocol--------------------------------------------------------------------19
2.4.2. Definition of DMSA scans findings---------------------------------------------20
2.5. Radiological Studies--------------------------------------------------------------------21
2.5.1. Renal ultrasound examination----------------------------------------------------21
2.5.2. Voiding cystourethrography (VCUG) examination----------------------------21
2.6. Measurement of Cytokines------------------------------------------------------------ 22
2.7. Statistical Analysis----------------------------------------------------------------------23
Chapter 3. Results 25
3.I. Results of IL-6 and IL-8 Studies----------------------------------------------------25
3.I.1. Patient characteristics---------------------------------------------------------------25
3.I.2. Laboratory tests---------------------------------------------------------------------25
3.I.3. Radiological findings---------------------------------------------------------------26
3.I.4. Serum IL-6 and IL-8 levels--------------------------------------------------------26
3.I.5. Urine IL-6 and IL-8 levels---------------------------------------------------------28
3.I.6. Serum and urine IL-6 and IL-8 levels in relation to VUR--- -----------------29
3.I.7. Correlations of IL-6 and IL-8 levels with inflammatory markers------------29
3.I.8. Optimal cutoff values of inflammatory markers, IL-6 and IL-8 for the
diagnosis of acute pyelonephritis-------------------------------------------------29
3.I.9. IL-6 and IL-8 levels in relation to renal scarring-------------------------------30
3.II. Results of IL-1β Study---------------------------------------------------------------31
3.II.1. Patient characteristics--------------------------------------------------------------31
3.II.2. Laboratory findings----------------------------------------------------------------32
3.II.3. Radiological findings--- ----------------------------------------------------------32
3.II.4. Urine IL-1β levels and urine IL-1β/creatinine ratio in children with
acute pyelonephritis and lower UTI----------------------------------------------33
3.II.5. Urine IL-1β levels and urine IL-1β/creatinine ratio in VUR-----------------34
3.II.6. Correlations of urine IL-1β level with inflammatory markers, sex and age
in children with acute pyelonephritis--------------------------------------------34
3.II.7. Optimal cutoff values of inflammatory markers and urine IL-1β level
for the diagnosis of acute pyelonephritis-----------------------------------------35
3.II.8. Urine IL-1β levels in children with renal scarring-----------------------------35
Chapter 4. Discussion 37
4.1. The diagnosis of acute pyelonephritis in children----------------------------------37
4.2. The detective rate of cytokines in children with febrile UTI---------------------38
4.3. Inflammatory markers in children with acute pyelonephritis--------------------38
4.4. Relationship of cytokines to laboratory findings-----------------------------------39
4.5. IL-6 and IL-8 responses in children with acute pyelonephritis------------------40
4.6. IL-1β response in children with acute pyelonephritis-----------------------------42
4.7. Cytokines levels in acute pyelonephritis documented by DMSA scan----------43
4.8. Cytokines in children with VUR-----------------------------------------------------45
4.9. Cytokines in children with renal scarring------------------------------------------ 47
4.9.1. IL-1β and renal scarring--------------------------------------------------------47
4.9.2. IL-6 and renal scarring----------------------------------------------------------49
4.9.3. IL-8 and renal scarring----------------------------------------------------------51
Chapter 5. Conclusions and Suggestions 54
Chapter 6. Tables 56
Table I.1. Clinical characteristics of children with acute pyelonephritis and
lower UTI ------------------------------------------------------------------------56
Table I.2. Detective rates of the initial serum and urine IL-6 and IL-8 in children
with acute pyelonephritis, lower UTI, non-renal febrile controls and
healthy controls------------------------------------------------------------------57
Table I.3. Serum and urine levels of IL-6 and IL-8 in children with acute pyelonephritis,
lower UTI, non-renal febrile controls and healthy controls---------------------58
Table I.4. The initial serum and urine levels of IL-6 and IL-8 in children with
and without VUR----------------------------------------------------------------59
Table I.5. Correlations between serum and urine IL-6 and IL-8 levels and
inflammatory markers in children with acute pyelonephritis-------------60
Table.I.6. Sensitivity, specificity, PPV and NPV of inflammatory markers,
IL-6 and IL-8 for the diagnosis of acute pyelonephritis--------------------61
Table I.7. The initial serum and urine levels of IL-6 and IL-8 in relation to the
children with renal scarring---------------------------------------------------62
Table II.1. Clinical characteristics of children with acute pyelonephritis and
lower UTI in IL-1β study-----------------------------------------------------63
Table II.2. Detective rates of the initial urine IL-β in children with acute
pyelonephritis, lower UTI, non-renal febrile controls---------------------64
Table II.3. Urine IL-1β levels in children with acute pyelonephritis and lower
UTI and non-renal febrile controls ------------------------------------------65
Table II.4. Initial urine IL-1β levels in children with VUR----------------------------66
Table II.5. Correlation and multiple linear regression of urine IL-1β with
inflammatory markers, sex and age in children with acute
pyelonephritis ------------------------------------------------------------------67
Table II.6. Sensitivity and specificity of inflammatory markers and urine IL-1β
for the diagnosis of acute pyelonephritis------------------------------------68
Table II.7. Initial urine IL-1β levels in children with renal scarring-----------------69
Chapter 7. Figures 70
Fig. 1. A case of normal DMSA scan --------------------------------------------------70
Fig. 2. A case of acute pyelonephritis --------------------------------------------------70
Fig. 3. A case of renal scarring-----------------------------------------------------------71
Fig. 4. A case of moderate hydronephrosis---------------------------------------------71
Fig. 5. A case of duplex kidney----------------------------------------------------------72
Fig. 6. A case of ureterocele--------------------------------------------------------------72
Fig. 7. A case of normal VCUG examination------------------------------------------73
Fig. 8. A case of VUR, grade II----------------------------------------------------------73
Fig. 9. A case of VUR, grade III---------------------------------------------------------74
Fig. 10. A case of VUR, grade IV--------------------------------------------------------74
Fig. 11. A case of VUR, grade V---------------------------------------------------------75
Fig. 12 A and B. A case of acute pyelonephritis with subsequent renal scarring
at 8 months later-------------------------------------------------------------------76
Fig. 13. Urine IL-1β levels in children with acute pyelonephritis and lower
UTI and non-renal febrile controls--------------------------------------------77
References 78
Published Papers 89


1. Jakobsson B, Esbjomer E, Hansson S. Minimum incidence and diagnostic rate of
first urinary tract infection. Pediatrics 1999;104:222-6.
2. Hellström A, Hansson E, Hansson S, Hjalmas K, Jodal U. Association between
urinary symptoms at 7 years old and previous urinary tract infection. Arch Dis
Child 1991;66:232-4.
3. Stokland E, Hellström M, Jacobsson B, Jodal U, Sixt R. Renal damage one year
after first urinary tract infection: role of dimercaptosuccinic acid scintigraphy. J
Pediatr 1996;129:815-20.
4. Rushton HG. Urinary tract infections in children: epidemiology, evaluation, and
management. Pediatr Clin North Am 1997;44:1133-69.
5. Jacobson SH, Eklof O, Lins LE, Wikstad I, Winberg J. Long-term prognosis of
post-infectious renal scarring in relation to radiological findings in childhood: a
27-year follow-up. Pediatr Nephrol 1992;6:19-24.
6. Jakobsson B, Berg U, Svensson L. Renal scarring after acute pyelonephritis. Arch
Dis Child 1994;70:111-5.
7. Jodal U, Lindberg U, Lincoln K. Level diagnosis of symptomatic urinary tract
infection in childhood. Acta Paediatr Scand 1975;64:201-7.
8. Hellerstein S, Duggan E, Welchert E, Mansour F. Serum C-reactive protein and
7 9
the site of urinary tract infections. J Pediatr 1982;100:21-5.
9. Hoberman A, Chao HP, Keller DM, Hickey R, Davis HW, Ellis DE. Prevalence of
urinary tract infection in febrile infants. J Pediatr 1993;123:17-23.
10. Ilyas M, Mastin ST, Richard GA. Age-related radiological imaging in children
with acute pyelonephritis. Pediatr Nephrol 2002;17:30-4.
11. Miller T, Phillips S. Pyelonephritis: the relationship between infection, renal
scarring, and antimicrobial therapy. Kidney Int 1981;19:654-62.
12. Biggi A, Dardanelli L, Pomero G, Cussino P, Noello C, Sernia O, et al. Acute
renal cortical scintigraphy in children with first urinary tract infection. Pediatr
Nephrol 2001;16: 733-8.
13. Rushton HG. The evaluation of acute pyelonephritis and renal scarring with
technetium 99m-dimercaptosuccinic acid renal scaintigraphy: evolving concepts
and future directions. Pediatr. Nephrol 1997;11:108-20.
14. Traisman ES, Conway JJ, Traismsn HS, Yogev R, Firlit C, Shkolnik A, et al. The
localization of urinary tract infection with 99m-Tc glucoheptonate scintigraphy.
Pediatr Radiol 1986;16:403-6.
15. Sty JR, Wells RG, Starshak RJ, Schroeder BA. Imaging in acute renal infection in
children. AJR 1987;148:471-7.
16. Rushton HG, Majd M, Chandra R, Yim D. Evaluation of
8 0
99m-technetium-dimercaptosuccinic acid renal scans and experimental acute
pyelonephritis in piglets. J Urol 1988;140:1169-74.
17. Parkhouse HF, Godley ML, Cooper J, Risdon RA, Ransley PG. Renal imaging
with 99m-Tc-labelled DMSA in the detection of acute pyelonephritis: an
experimental study in the pig. Nucl Med Commun 1989;10:63-70.
18. Lange MJ, Piers DA, Kosternik JGW, Lujik WHJ, Meijer S, Zeeuw D, Hem GK.
Renal handling of technetium-99m DMSA: evidence for glomerular filtration and
peritubular uptake. J Nucl Med 1989;30:1219-25.
19. Majd M, Rushton HG. Renal cortical scintigraphy in the diagnosis of acute
pyelonephritis. Semin Nucl Med 1992;22:98-111.
20. Hill GS, Clark RL. A comparative angiographic, microangiographic, and
histologic study of experimental pyelonephritis. Invest Radiol 1972;7:33-47.
21. Goldraich NP, Goldraich JH. Update on dimercaptosuccinic acid renal scanning in
children with urinary tract infection. Pediatr Nephrol 1995;9:221-6.
22. Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: source,
receptors, effects, and inducers. Clin Microbiol Rev 1997;10:742-80.
23. Dinarello CA, Wolff SM. The role of interleukin-1 in disease. N Engl J Med 1993;
328:106-13.
24. Hedges S, Agace W, Svensson M, Sjogren A-C, Ceska M, Svanborg C.
8 1
Uroepithelial cells are part of a mucosal cytokine network. Infect Immun
1994;62:2315-21.
25. Tullus K, Wang JA, Lu Y, Burman LG, Brauner A. Interleukin-1α and
interleukin-6 in the urine, kidney, and bladder of mice inoculated with Escherichia
coli. Pediatr Nephrol 1996;10:453-7.
26. Kaboré AF, Simard M, Bergeron MG: Local production of inflammatory
mediators in an experimental model of acute obstructive pyelonephritis. J Infect
Dis 1999;179:1162-72.
27. Gürgöze MK, Akarsu S, Yimaz E, Gödekmerdan A, Akca Z, Ciftci I, et al.
Proinflammatory cytokines and procalcitonin in children with acute pyelonephritis.
Pediatr Nephrol 2005;20:1445-8.
28. Krzemień G, Roszkowska-Blaim M, Kostro I, Szmigielska A, Karpinska M,
Sieniawska M, et al. Urinary levels of interleukin-6 and interleukin-8 in children
with urinary tract infection to the age of 2. Med Sci Monit 2004;10:CR593-7.
29. Jantausch BA, O’Donnell R, Wiedermann BL. Urinary interleukin-6 and
interleukin-8 in children with urinary tract infection. Pediatr Nephrol
2000;15:236-40.
30. Kassir K, Vargas-Shiraishi O, Zaldivar F, Berman M, Singh J, Arrieta A. Cytokine
profiles of pediatric patients treated with antibiotics for pyelonephritis:
8 2
potential therapeutic impact. Clin Diagn Lab Immunol 2001;8:1060-3.
31. Otto G, Braconier J, Andreasson A, Svanborg C. Interleukin-6 and disease severity
in patients with bacteremic and nonbacteremic febrile urinary tract infection. J
Infect Dis 1999;179:172-9.
32. Benson M, Jodal U, Agace W, Hellström M, Mårild S, Rosberg S, et al.
Interleukin (IL)-6 and IL-8 in children with febrile urinary tract infection and
asymptomatic bacteriuria. J Infect Dis 1996;174:1080-4.
33. Tullus K, Escobar-Billing R, Fituri O, Burman LG, Karlsson A, Wikstad I, et al.
Interleukin-1α and interleukin-1 receptor antagonist in the urine of children with
acute pyelonephritis and relation to renal scarring. Acta Paediatr 1996; 85:158-62.
34. Dinarello CA. Interleukin-1β. Crit Care Med 2005; 33:S460-2.
35. Starnes HF. Biological effects and possible clinical applications of interleukin 1.
Sem Hematol 1991;28:34-9.
36. Martins SM, Darlin DJ, Lad PM, Zimmern PE. Interleukin-1β: A clinically
relevant urinary marker. J Urol 1994;151:1198-201.
37. Davidoff R, Yamaguchi R, Leach GE, Park E, Lad Pramod M. Multiple urinary
cytokine levels of bacterial cystitis. J Urol 1997;157:1980-5.
38. Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradism for
cytokines. Science 1992;258:593-7.
8 3
39. Uehling DT, Johnson DB, Hopkins WJ. The urinary tract response to entry of
pathogen. World J Urol 1999;17:351-8.
40. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response.
Biochem J 1990;265:621-36.
41. Hack CE, Degroot ER, Felt-Bersma RJF, Nuijens JH, Van Schijndel RJ,
Eerenberg-Belmer AJM, et al. Increased plasma levels of interleukin-6 in sepsis.
Bolld 1989;74:1704-10.
42. Tullus K, Fituri O, Linné T, Escobar-Billing R, Wikstad I, Karlsson A, et al. Urine
interleukin-6 and interleukin-8 in children with acute pyelonephritis, in relation
to DMSA scintigraphy in the acute phase and at 1-year follow-up. Pediatr Radiol
1994;24:513-15.
43. Benson M, Jodal U, Andreasson A, Karlsson Å, Rydberg J, Svanborg C.
Interleukin-6 response to urinary tract infection in childhood. Pediatr Infect Dis J
1994;13:612-6.
44. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin-8,
a novel cytokine that activates neutrophils. J Clin Invest 1989;84:1045-9.
45. Godaly G, Proudfoot AEI, Offord R, Svanborg C, Agace WW. Role of epithelial
interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced
transuroepithelial neutrophil migration. Infect Immun 1997;65:3451-6.
8 4
46. Ko Y-C, Mukaida N, Ishiyama S, Tokue A, Kawai T, Matsushima K, et al.
Elevated interleukin-8 levels in the urine of patients with urinary tract infections.
Infect Immun 1993;61:1307-14.
47. Jahnukainen T, Chen M, Celsi G. Mechanisms of renal damage owing to infection.
Pediatr Nephrol 2005;20:1043-53.
48. Haraoka M, Senoh K, Ogata N, Furukawa M, Matsumoto T, Kumazawa. Elevated
interleukin-8 levels in the urine of children with renal scarring and/or
vesicoureteral reflux. J Urol 1996;155:678-80.
49. Galanakis E, Bitsori M, Dimitriou H, Giannakopoulou C, Karkavitsas NS,
Kalmanti M. Urine interleukin-8 as a marker of vesicoureteral reflux in infants.
Pediatrics 2006;117:e863-7.
50. Hang L, Frendeus B, Godaly G, Svanborg C. Interleukin-8 receptor knockout mice
have subepithelial neutrophil entrapment and renal scarring following acute
pyelonephritis. J Infect Dis 2000;182:1738-48.
51. Patel K, Charron M, Hoberman A, Brown ML, Rogers KD. Intra and
interobserver variability in interpretation of DMSA scans using a set of
standardized criteria. Pediatr Radiol 1993;23:506-9.
52. International Reflux Study in Children. International system of radiographic
grading of vesicoureteric reflux. Pediatr Radiol 1985;15:105-9.
8 5
53. Rugo HS, O’Hanley P, Bishop AG, Pearse MK, Abrams JS, Howard M, et al:
Local cytokine production in a murine model of Escherichia coli pyelonephritis. J
Clin Invest 1992;89:1032-9.
54. Fünfstück R, Franke S, Hellberg M, Ott U, Knöfel B, Straube E, et al. Secretion
of cytokines by uroepithelial cells stimulated by Escherichia coli and Citrobacter
spp. Infect J Antimicrol Agent 2001;17:253-8.
55. Roilides E, Papachristou F, Gioulekas E, Tsaparidou S, Karatzas N, Sotiriou J, et
al. Increased urine interleukin-6 concentration correlated with pyelonephritis
changes on 99mTc-dimercaptosuccinic acid scan in neonates with urinary tract
infection. J Infect Dis 1999;180:904-7.
56. Arrieta AC, Sequeira LA, Vargas-Shiraishi OM, Lang DA, Sandborg CI.
Interleukin (IL)-1α and -β and IL-6 in urine and serum of children with urinary
tract infection: diagnostic implications. Pediatr Res 1995;37:169A.
57. Schibler KR, Liechty KW, White WL, Rothstein G, Christensen RD. Defective
production of interleukin-6 by monocytes: a possible mechanism underlying
several host defense deficiencies of neonates. Pediatr Res 1992;31:18-21.
58. Downs SM. Technique report: urinary tract infection in febrile infants and young
children. The Urinary Tract Subcommittee of the American Academy of Pediatrics
Committee on Quality Improvement. Pediatrics 1999;103:e54-8.
8 6
59. Fanos V, Cataldi L. Antibiotics or surgery for vesicoureteral reflux in children.
Lancet 2004;353:1720-2.
60. Ninan GK, Singh Jutley R, Eremin O. Urinary cytokines as markers of reflux
nephropathy. J Urol 1999;162:1739-42.
61. Jacobson SH, Hylander B, Wretlind B, Brauner A. Interleukin-6 and interleukin-8
in serum and urine in patients with acute pyelonephritis in relation to
bacterial-virulence-associated traits and renal function. Nephron 1994;67:172-9.
62. Khalil A, Brauner A, Bakhiet M, Burman LG, Jaremko G, Wretlind B, et al.
Cytokine gene expression during experimental Escherichia coli pyelonephritis in
mice. J Uro 1997;158:1576-80.
63. Dinarello CA. The role of the interleukin-1-receptor antagonist in blocking
inflammation mediated by interleukin-1. N Engl J Med 2000;343:732-4.
64. Zhang Y, McCluskey K, Fujii K, Wahl LM. Differential regulation of monocyte
matrix metalloproteinase and TIMP-1 production by TNF-alpha,
granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent
and -independent mechanisms. J Immunol 1998;161:3071-6.
65. Khalil A, Tullus K, Bartfai T, Bakhiet M, Jaremko G, Brauner A. Renal cytokine
responses in acute Escherichia coli pyelonephritis in IL-6-deficient mice. Clin
Exp Immunol 2000;122:200-6.
8 7
66. Border WA, Noble NA. Transforming growth factor-β in tissue fibrosis. N Engl J
Med 1994;331:1286-92,
67. Hertting O, Khalil A, Jaremko G, Chromek M, Li YH, Bakhiet M, et al.
Enhanced chemokine response in experimental acute Escherichia coli
pyelonephritis in IL-1β-deficienct mice. Clin Exp Immunol 2003;131:225-33.
68. Yamamoto T, Noble NA, Miller DE, Border WA. Sustained expression of
TGF-β1 underlines development of progressive kidney fibrosis. Kidney Int
1994;45:916-27.
69. Peters H, Norble NA, Border WA. Transforming growth factor-beta in human
glomerular injury. Curr Opin Nephrol Hypertens 1997;6:389-93.
70. Border WA, and Noble NA. TGF-β in kidney fibrosis: A target for gene therapy.
Kidney Int 1997;1388-96.
71. Cotton SA, Gbadegesin RA, Williams S, Brenchley PEC, Webb NJA. Role of
TGF-β1 in renal parenchymal scarring following childhood urinary tract
infection. Kidney Int 2002;61:61-7.
72. Farmaki E, Papachristou F, Winn RM, Karatzas N, Sotiriou J, Roilides E.
Transforming growth factor-β1 in the urine of young children with urinary tract
infection. Pediatr Nephrol 2005;20:180-3.
73. Shahin R, Engberg I, Hagberg L, Svanborg-Eden C. Neutrophil recruitment and
8 8
bacterial clearance correlated with LPS responsiveness in local gram-negative
infection. J Immunol 1987;138:3475-80.
74. Agace W, Hedges S, Ceska M, Svanborg C. IL-8 and the neutrophil response to
mucosal gram-negative infection. J Clin Invest 1993;92:780-5.
75. Haraoka M, Hang L, Frendéus B. Neutrophil recruitment and resistance to
urinary tract infection. J Infect Dis 1999;180:1220-9.
76. Hagberg L, Hull R, Hull S, McGhee JR, Michalek SM, Svanborg C. Difference
in susceptibility to gram-negative urinary tract infection between C3H/HeJ and
C3H/HeN mice. Infect Immun 1984;46:839-44.
77. Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C.
Interleukin-8 receptor deficiency confers susceptibility to acute experimental
pyelonephritis and may have a human counterpart. J Exp Med 2000;192:881-90.
78. Hang L, Frendéus B, Godaly G, Svanborg C. Interleukin-8 receptor knockout
mice have subepithelial neutrophil entrapment and renal scarring following
acute pyelonephritis. J Infect Dis 2000;182:1738-48.
79. Frendéus B, Godaly G, Hang L, Karpman D, Svanborg C. Interleukin-8 receptor
deficiency confers susceptibility to acute pyelonephritis. J Infect Dis 2001;183
(Suppl):S56-60.
80. Rao WH, Evans GS, Finn A. The significance of interleukin 8 in urine. Arch Dis
Child 2001;85:256-62.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王冠閔、黃柏農(2004),「臺灣股、匯市與美國股市關聯性探討」,臺灣經濟預測與政策,第34卷,第2期,頁31-72。
2. 連春紅、李政峰(2005),「臺灣股匯市與美日股市連動性之探討」,臺灣銀行季刊,第56期,第1卷,頁258-268。
3. 王凱立、陳美玲(2003),「亞洲金融風暴發生前後美國與台灣股市動態關聯之進一步研究」,經濟論文叢刊,第 31 輯,第 2 期,頁1-62。
4. 張巧宜(2003),「美國與臺灣股價共移程度之研究-分數共整合之應用」,東吳經濟商學學報,第40期,頁99-121。
5. 楊踐為、賴怡洵(1998),「美、日、香港與臺灣四地股價指數連動關係之探討」,臺灣土地金融季刊,第35卷,第2期,頁1-15。
6. 聶建中、林景春、詹凱婷(2004),「兩岸三地股價聯動性研究」,輔仁管理評論,第11卷,第2期,頁63-82。
7. 姚誠,2000,從「意識」到「認同」–論台灣教育的建構,課程與教學,3卷,3期,1-16。
8. 張志銘、呂崇銘、賴永僚、楊世達,2006,探討中部大專院校學生運動參與因素對社會心理涉入之影響,運動與遊憩研究,1卷,2期,102-116。
9. 張良漢,2007,登山健行活動涉入量表信度與效度之建構,運動休閒管理學報,4卷,1期,34-43。
10. 陳文銓,2005,室內溫水游泳池消費者之涉入程度、滿意度集中程度之相關研究-以高高屏地區室內溫水游泳池為例,輔仁大學體育學刊,4期,81-98。
11. 陳弘慶,2007,2006年全國大專運動會參與者之涉入程度、體驗行銷、滿意度及忠誠度之相關實證研究,運動休閒管理學報,4卷,1期,14-33。
12. 陳國棟,2006,海洋人文教育芻議,教育資料與研究,70期,99-104。
13. 陳肇堯、胡學彥,2002,休閒農場遊客認知與滿意度分析- 以南部地區為例,戶外遊憩研究,15卷,3期,31-54。
14. 黃俊英、賴文彬,1990,涉入的理論發展與實務應用,管理科學學報,7卷,1期,15-29
15. 潘美璟,陳麗淑,2009,博物館協助中小學推動海洋教育現況初探,博物館學季刊,23卷,2期,117-132。
 
系統版面圖檔 系統版面圖檔