Ahmad, A. L., K. K. Lau and M. Z. Abu Bakar, “Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel,” J. Membr. Sci., 262 (2005) 138–152.
Belfort, G., R. H. Davis and A. L. Zydney, “The behavior of suspensions and macromolecular solutions in crossflow microfiltration,” J. Membr. Sci., 96 (1994) 1–58.
Belfort, G. and G. A. Guter, “An experimental study of electrodialysis hydrodynamics,” Desalination, 10 (1972) 221.
Cao, Z., D. E. Wiley and A. G. Fane, “CFD simulations of net-type turbulence promoters in a narrow channel,” J. Membr. Sci., 185 (2001) 157-176.
Da Costa, A. R., A. G. Fane, C. J. D. Fell and A. C. M. Franken, “Optimal channel spacer design for ultrafiltration,” J. Membr. Sci., 62 ( 1991 ) 275-291.
Da Costa, A. R., A. G. Fane and D. E. Wiley, “Ultrafiltration of whey protein solutions in spacer-filled channels,” J. Membr. Sci., 76 (1993) 245.
Da Costa, A. R., A. G. Fane and D. E. Wiley, “Spacer characterization and pressure drop modelling in spacer-filled channel for ultrafiltration,” J. Membr. Sci., 87 ( 1994 ) 79-98.
Dendukuri, D., S. K. Karode and A. Kumar, “Flow visualization through spacer filledchannels by computational fluid dynamics-II:improved feed spacer designs,” J. Membr. Sci., 249 (2005) 41–49.
DOW, “Reverse Osmosis System Analysis Version 5.01.” http://www.dow.com/liquidseps/design/rosa.htm, Accessed January 2003.
Fárková, J., “The pressure drop in membrane module with spacers,” J. Membr. Sci., 64 ( 1991 ) 103-111.
Field, R. W., D. Wu, J. A. Howell and B. B. Gupta, “Critical flux concept for microfiltration fouling,” J. Membr. Sci., 100 (1995) 259.
Fischl, D. S., K. J. Hanson, R. H. Muller and C. W. Tobias, “Mass transfer enhancement by small flow obstacles in electrochemical cells,” Chem. Eng. Commun., 38 (1984) 191.
Fluent, Inc., Product Documentation, Fluent Documentation, “Modeling Guide,” Version 6.2 (2005).
Geraldes, V., V. Semiao and M. N. de Pinho, “Flow and mass transfer modelling of nanofiltration,” J. Membr. Sci., 191 (2000a) 109.
Geraldes, V., V. Semiao and M. N. de Pinho, “Numerical modelling of mass transfer in slits with semi-
permeable membrane walls,” Eng. Comput., 17 (2000b) 192.
Geraldes, V., V. Semiao and M. N. de Pinho, “The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption,” Desalination, 146 (2002a) 187.
Geraldes, V. and V. Semião, “Flow management in nanofiltration spiral wound modules with ladder-type spacers,” J. Membr. Sci., 203 (2002b) 87-102.
Geraldes, V., V. Semião and M. N. de Pinho, “Concentration polarisation and flow structure within nanofiltration spiral-wound modules with ladder-type spacers,” Comput. Struct., 82 (2004) 1561–1568
Gimmelshtein, M. and R. Semiat, ” Investigation of flow next to membrane walls” J. Membr. Sci., 264 (2005) 137–150
Harlow, F. H. and J. E. Welch, “Numerical Calculation of Time-dependent Viscous Incompressible Flow of Fluid with Free Surface,” Phys. Fluids, 8 (1965) 2182-2189.
Hu, H. H., D. D. Joseph and M. J. Crochet, “Direct numerical simulation of fluid particle motions,” Theor. Comput. Fluid Dyn., 3 (1992) 285–306.
Hydranautics, Designing your RO system, http://www.membranes. com/design/, Accessed January 2003.
Kang, I. S. and H. N. Chang, “The effect of turbulence promoters on mass transfer—numerical analysis and flow visualization,” Int. J. Heat Mass Transf., 25 (1982) 1167.
Karode , S. K. and A. Kumar, “Flow visualization through spacer filled channels by computational fluid dynamics I. Pressure drop and shear rate calculations for flat sheet geometry,” J. Membr. Sci., 193 (2001) 69-84.
Klyachko, V. A. and D. Ushakov, “Hydraulic principles for the design of electrodialysis desalination plants,” Desalination, 2 (1967) 279.
Kim, D. H., I. H. Kim and H. N. Chang, “Experimental study of mass transfer around a turbulence promoter by the limiting current method,” Int. J. Heat Mass Transf., 26 (1983) 1007.
Lehmann, M. J., “Improved CFD modelling of particle-wall collision by including interception,” Filtration, 6 (2) (2006) 159–162.
Leitz, F. B. and L. Marinicic, “Enhanced mass transfer in electrochemicalm cells using turbulence promoters,” J. Appl. Electrochem., 7 (1977) 473.
Levy, P. F. and R. S. Earle, “The effect of channel height and channel spacers on flux and energy requirements in crossflow filtration,” J. Membr. Sci., 91 (1994) 135.
Li, F., W. Meindersma, A. B. de Haan and T. Reith, “Novel spacers for mass transfer enhancement in membrane separations,” J. Membr. Sci., 253 (2005) 1-12.
Li. H., A. G. Fane, H. G. L. Coster and S. Vigneswaran, “An assessment of depolarisation models of crossflow microfiltration by direct observation through the membrane,” J. Membr. Sci., 172 (2000) 135.
Li, F., G. W. Meindersma, A. B. de Haan and T. Reith, “Optimisation of non-woven spacers by CFD and validation by experiments,” Desalination, 146 (2002a) 209.
Li, F., G. W. Meindersma, A. B. de Haan and T. Reith, “Optimisation of commercial net spacers in spiral wound membrane modules,” J. Membr. Sci., 208 (2002b) 289.
Light, W. G. and T. V. Tran, “Improvement of thin-channel design for pressure-driven membrane systems,” Ind. Eng. Chem. Process Des. Dev., 20 (1981) 33.
Lipnizki, J. and G. Jonsson, “Flow dynamics and concentration polarization in spacer-filled channels,” Desalination, 146 (2002) 213.
Lu, W. M., K. L. Tung and K. J. Hwang, “Fluid flow through basic weaves of monofilament filter cloth,” Text. Res. J., 66 (1996) 311-323.
Lu, W. M., K. L. Tung and K. J. Hwang, “Effect of woven structure on transient characteristics of cake filtration,” Chem. Eng. Sci., 52 (11) (1997) 1743–1756.
Ma, S., L. Song, , S. L. Ong and W. J. Ng, “A 2-D streamline upwind Petrov/Galerkin finite element model for concentration polarization in spiral wound reverse osmosis modules.” J. Membr. Sci., 244 (2004) 129.
Morsi, S. A. and A. J. Alexander, “An investigation of particle trajectories in two-phase flow systems,” J. Fluid Mech., 55 (2), (1976) 193–208.
Mulder, M., Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
Neal, P. R., H. Li, A. G. Fane and D. E. Wiley, “The effect of filament orientation on critical flux and particle deposition in spacer-filled channels,” J. Membr. Sci., 214 (2003) 165–178.
Polyakov, S. V. and F. N. Karelin, “Turbulence promoter geometry: its influence on salt rejection and pressure losses of a composite-membrane spiral wound module,” J. Membr. Sci., 75 (1992) 205.
Probstein, R. F., J. S. Shen and W. F. Leung, “Ultrafiltration of macromolecular solutions at high polarization in laminar channel flow,” Desalination, 24 (1978) 1.
Ranade, V. V. and A. Kumar, “Fluid dynamics of spacer filled rectangular and curvilinear channels,” J. Membr. Sci., 271 (2006a) 1-15.
Ranade, V. V. and A. Kumar, “Comparison of flow structures in spacer-filled flat and annular channels,” Desalination, 191 (2006b) 236–244.
Rief, S., A. Latz and A. Wiegmann, “Research note: computer simulation of air flitration including electric surface charges in 3-dimensional fibrous microstructures,” Filtration, 6 (2) (2006) 169–172.
Schock, G. and A. Miquel, “Mass transfer and pressure loss in spiral wound modules,” Desalination, 64 (1987) 339.
Schwinge, J., D. E. Wiley, A. G. Fane and G. Günther, “Characterization of a zigzag spacer for ultrafiltration,” J. Membr. Sci., 172 (2000) 19.
Schwinge, J., D. E. Wiley and D. F. Fletcher, “Simulation of flow around spacer filaments between channels walls. Part I. Hydrodynamics,” Ind. Eng. Chem. Res., 41 (2002a) 2977.
Schwinge, J., D. E. Wiley and D. F. Fletcher, “Simulation of flow around spacer filaments between channels walls. Part II. Mass transfer,” Ind.. Eng. Chem. Res., 41 (2002b) 4879.
Schwinge, J., P. R. Neal, D. E. Wiley and A. G. Fane, “Estimation of foulant deposition across the leaf of a spiral wound module,” Desalination, 146 (2002c) 203–208.
Schwinge, J., D. E. Wiley and D. F. Fletcher, “Simulation of unsteady flow and vortex shedding for narrow spacer-filled channels,” Ind. Eng. Chem. Res., 42 (2003) 4962–4977.
Schwinge, J., P. R. Neal, D. E. Wiley, D. F. Fletcher and A. G. Fane, “Spiral wound modules and spacers Review and analysis,” J. Membr. Sci., 242 (2004) 129–153.
Shen, J. J. S. and R. F. Probstein, “Turbulence promotion and hydrodynamic optimization in an ultrafiltration process,” Ind. Eng. Chem. Process Des. Dev., 18 (1979) 547.
Song, L. and S. Ma, “Numerical studies of the impact of spacer geometry on concentration polarization in spiral wound membrane modules,” Ind. Eng. Chem. Res., 44 (2005) 7638-7645.
Subramani, A., S. Kim and Eric M. V. Hoek, “Pressure, flow, and concentration profiles in open and spacer-filled membrane channels “J. Membr. Sci., 277 (2006) 7–17.
Taylor, C. and T. G. Hughes, Finite element programming of the navier-stokes equations, Pineridge Press, Swansea (1981).
Thomas, D. G., “Forced convection mass transfer. Part II. Effect of wires located near the edge of the laminar boundary layer on the rate of forced convection from a flat plate,” AIChE J., 11 (1965) 848.
Thomas, D. G., “Forced convection mass transfer. Part III. Increased mass transfer from a flat plate caused by the wake from cylinders located near the edge of the boundary layer,” AIChE J., 12 (1966) 124.
Thomas, D. G., W. L. Griffith and R. M. Keller, “The role of turbulence promoters in hyperfiltration plant optimization,” Desalination, 9 (1971) 33.
Thomas, D. G. and W. R. Mixon, “Effect of axial velocity and initial flux on flux decline of cellulose acetate membranes in hyperfiltration of primary sewage effluents,” Ind.. Eng. Chem. Process Des. Dev., 11 (1972) 339.
Thomas, D. G., “Forced convection mass transfer in hyperfiltration at high fluxes,” Ind. Eng. Chem. Fundam., 12 (1996) 396.
Tung, K. L., Y. L. Li, K. T. Lu and W. M. Lu, “Effect of calendering of filter cloth on transient characteristics of cake filtration,” Sep. Purif. Technol., 48 (2006) 1–15.
Varol, S. S., N. Yucel and H. Turkoglu, “Laminar flow and mass transfer in channels with a porous bottom wall and with fins attached to the top wall,” Heat Mass Transf., 36 (2000) 103.
Versteeg H. K. and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume Method, Longman Ltd., London (1995).
Watson, J. S. and D. G. Thomas, “Forced convection mass transfer. Part IV. Increased mass transfer in an aqueous medium caused by detached cylindrical turbulence promoters in a rectangular channel,” AIChE J., 13 (1967) 676.
Zeman, L. J. and A. L. Zydney, Microfiltration and ultrafiltration principles and applications, Marcel Dekker Inc., New York (1996).
Zimmerer, C. C. and V. Kottke, “Effects of spacer geometry on pressure drop, mass transfer, mixing behavior and residence time distribution,” Desalination, 104 (1996) 129.
Zimmerer, C., P. Gschwind, G. Gaiser and V. Kottke, “Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls,” Exp. Therm. Fluid Sci., 26 (2002) 269.
王大銘,「膜過濾技術之基本原理與應用」,固液過濾技術:第十五章,呂維明編著,高立出版社,台北,(2004) 431-464。
黃國楨、呂維明,「數值模擬方法在粉粒體程序上之應用」,化工,42(6) (1995) 45-59。荒川忠一,「数值流体工学」,東京大学出版会,東京 (1994)。