跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李姿瑩
研究生(外文):Chih-Ying Li
論文名稱:聚二甲基矽氧烷/聚丙烯腈複合薄膜之製備及滲透蒸發分離乙二醇水溶液之研究
論文名稱(外文):Study on the Pervaporation of Aqueous Ethylene Glycol Solution through PDMS/PAN Composite Membrane
指導教授:賴君義賴君義引用關係李魁然
指導教授(外文):Juin-Yih LaiKueir-Rarn Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:115
中文關鍵詞:聚二甲基矽氧烷滲透蒸發乙二醇水溶液複合薄膜
外文關鍵詞:Composite membranePolydimethylsiloxanePervaporationaqueous Ethylene Glycol solution.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功地製備出可應用於滲透蒸發(Pervaporation)分離程序分離乙二醇(Ethylene Glycol, EG)水溶液之聚二甲基矽氧烷/聚丙烯腈(Polydimethylsiloxane/ Polyacrylonitrile, PDMS/PAN)複合薄膜。研究中探討電漿處理聚丙烯腈薄膜對聚二甲基矽氧烷/聚丙烯腈複合薄膜分離乙二醇水溶液之效能影響。為符合汽車抗凍劑回收之需求,進料濃度範圍為小於70wt.%之乙二醇水溶液。文中以透過量(Permeation rate )及滲透蒸發選擇指數(Permeation Separation Index, PSI)進行效能探討; 探討進料溫度範圍為30~70℃,並計算出透過物種之活化能(Ea)。探討變數包含改變電漿功率、處理時間、鑄膜液濃度及塗佈厚度等。以原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)探討薄膜特性。
研究結果顯示,氧氣電漿50瓦、60秒時為最佳的處理條件。聚丙烯腈基材膜膜表面的孔洞隨著電漿功率增加而增加,較薄的選擇層有較高透過量。
結果顯示,0550PDMS複合薄膜可成功地對乙二醇水溶液進行脫水;在進料為10wt.%乙二醇水溶液,操作溫度在30℃時,有較高之透過量、透過水濃度和PSI分別為1,135g/m2h、99.0wt.%與250,766。 0550PDMS複合薄膜,在進料溫度為30℃下,分離70wt.% 乙二醇水溶液時其透過量、透過水濃度及PSI分別為546 g/m2h、88.5wt.%及9,795。
Polydimethylsiloxane/ polyacrylonitrile (PDMS/p-PAN) composite membranes were successfully prepared in the present work for pervaporation separation of aqueous ethylene glycol solutions. In this study, we study on the effect of plasma treatment conditions on the pervaporation performance of aqueous ethylene glycol (EG) solution through PDMS/p-PAN composite membranes. The concentration range investigated (CEG < 70 wt.%) was selected according to existing motor vehicle antifreeze recycle requirements. The permeation rate and Pervaporation Separation Index (PSI) were monitored as the dehydration proceeded. The effect of temperature on the pervaporation performance was investigated in the range of 30–70°C. In addition, the activation energy of permeation (Ea) was calculated. The effects of preparation conditions including plasma treatment power, plasma treatment time, concentration of casting solution and casting thickness of the composite membrane active layer on the permeation rate and water concentration in permeate are discussed. In addition, the thickness of the dense selective layer was also adjusted by changing the coating thickness and the casting solution concentration. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies were used to characterize the membranes. Best results were obtained using oxygen plasma pretreatment followed by 50w, 60sec. The pore size on PAN substrate membrane surface increased with increasing plasma power.
The results obtained demonstrated the successful performance of 0550PDMS composite membrane for the dehydration of aqueous ethylene glycol solution. It was observed that at 30°C and with 10wt.% EG concentration, higher permeation rate, water concentration in permeate and PSI could be obtained was 1,135g/m2h, 99.0 wt.% and 250,766, respectively. Moreover, the results were obtained with 0550PDMS composite membrane, giving a permeation rate of 546g/m2h, water concentration in permeate of 88.5wt.% and PSI of 9,795 for a 70wt.% ethylene glycol aqueous solution at 30°C.
目錄

中文摘要 ----------------------------------------------------------------------- I
英文摘要 ----------------------------------------------------------------------- II
目錄 ----------------------------------------------------------------------------- IV
圖索引 -------------------------------------------------------------------------- VIII
表索引 -------------------------------------------------------------------------- XIII
符號說明 ----------------------------------------------------------------------- XIV

第一章 前言 -------------------------------------------------------------- 1

1-1 研究背景------------------------------------------------------------- 1
1-2 研究動機與目的 ----------------------------------------- 3

第二章 文獻回顧 --------------------------------------------- 6

2-1 薄膜的定義 -------------------------------------------------------- 6
2-2 薄膜製備方法 ----------------------------------------------------- 8
2-2-1 燒結法------------------------------------------------------- 8
2-2-2 拉伸法------------------------------------------------------- 8
2-2-3 軌跡蝕刻法------------------------------------------------- 8
2-2-4 溶出法------------------------------------------------------- 9
2-2-5 相轉換法---------------------------------------------------- 9
2-3 薄膜改質 ----------------------------------------------------------- 12
2-3-1 交聨 --------------------------------------------------------- 12
2-3-2 摻合 --------------------------------------------------------- 12
2-3-3 接枝 --------------------------------------------------------- 12
2-3-4 滲透交聯聚合法 ------------------------------------------ 13
2-3-5 電漿改質----------------------------------------------------- 13
2-3-6 蒸氣沉積合成法-------------------------------------------- 16
2-4 薄膜分離技術概述 ----------------------------------------------- 17
2-5 滲透蒸發原理 ----------------------------------------------------- 20
2-6 聚二甲基矽氧烷高分子------------------------------------------- 22
2-7 乙二醇特性 ---------------------------------------------- 23
2-8 有機物分離文獻回顧 ------------------------------------ 24

第三章 實驗 ------------------------------------------------------------- 36

3-1 複合薄膜製備 ----------------------------------------------------- 36
3-1-1 基材膜之製備 ---------------------------------------------- 36
3-1-2 緻密層之製備 ---------------------------------------------- 37
3-2 實驗藥品 ------------------------------------------------ 39
3-3 實驗儀器 ------------------------------------------------ 40
3-4 薄膜製備 ------------------------------------------------- 42
3-4-1 聚丙烯腈基材膜之製備 --------------------------------- 42
3-4-1.1 鑄膜溶液配置 ------------------------------ 42
3-4-1.2 基材膜之製備 ------------------------------ 42
3-4-2 電漿表面改質聚丙烯腈薄膜 ---------------------- 42
3-4-3 聚二甲基矽氧烷/聚丙烯腈複合膜之製備 --------- 43
3-4-3.1 鑄膜溶液配置 ------------------------------ 43
3-4-3.2 複合薄膜之製備 ---------------------------- 43
3-5 薄膜檢測 ------------------------------------------------- 44
3-5-1 掃描式電子顯微鏡 --------------------------------- 44
3-5-2 掃描式電子顯微鏡之X 射線能量散佈分析儀 ---- 44
3-5-3 原子力顯微鏡 --------------------------------------------- 44
3-5-4 滲透蒸發測試 ----------------------------------- 45
3-6 實驗架構 ------------------------------------------------ 47

第四章 結果與討論 ---------------------------------------------- 54

4-1 純基材與複合膜材滲透蒸發分離效能比較 ----------------- 54
4-2 氧氣電漿處理條件對滲透蒸發分離效之影響 -------------- 56
4-2-1 電漿處理時間探討 ----------------------------------- 56
4-2-2 電漿功率------------------------------------------------ 56
4-3 電漿功率對基材膜面之影響 ------------------------------ 58
4-4 製膜條件對PDMS/p-PAN複合膜滲透蒸發分離效能影響 60
4-4.1 刮膜厚度對滲透蒸發分離效能之影響 --------------- 60
4-4.2 成膜條件滲透蒸發效能之比較 ------------------------ 61
4-5 進料濃度對滲透蒸發分離效能之影響 ---------------------- 63
4-6 進料溫度對滲透蒸發分離效能之影響 ----------------------- 64

第五章 結論 ------------------------------------------------------------ 88

第六章 參考文獻 ------------------------------------------------------- 90

作者自述 ---------------------------------------------------------------- 99

圖索引
第一章
Fig. 1-1
Operating ranges and expected glycol concentrations for the individual process steps.
5
第二章
Fig. 2-1
Schematic representation of membrane cross-sections.
26
Fig. 2-2
Schematic representation of the nominal pore size and best theoretical model for the principal membrane separation processes.
27
Fig. 2-3
Milestones in the development of pervaporation.
28
Fig. 2-4
The principle of pervaporation.
29
Fig. 2-5
Liquid zone and vapor zone in series by Binning et al.
30
Fig. 2-6
Schematic representation of a two-phase system separated by a membrane.
31
Fig. 2-7
Solute concentration profile across the membrane and some previous studies using the
32
resistance-in-series model.
Fig. 2-8
PDMS chemical structure.
33
Fig. 2-9
Morphology of the substrate surfaces prepared by using different PAN concentration.
34
第三章
Fig. 3-1
Schematic diagram of composite membranes fabricated in the present work.
48
Fig. 3-2
Schematic diagram of continuous wet-inversion membrane formation unit.
49
Fig. 3-3
Plasma reactor.
50
Fig. 3-4
Pervaporation testing apparatus.
52
Fig. 3-5
The schematic diagram of pervaporation apparatus.
53
第四章
Fig. 4-1
Effect of O2 plasma treatment timeon pervaporation performance of 70wt.% aqueous EG solution through the
67
0550PDMS composite membrane at 30℃. (plasma power: 50w)
Fig. 4-2
Effect of O2 plasma treatment time on PSI value of0550PDMS composite membrane for 70wt.% aqueous EG solution at 30℃. (plasma power: 50w)
68
Fig. 4-3
Effect of O2 plasma power on pervaporation performanceof 70wt.% aqueous EG solution through the 0550PDMS composite membrane at 30℃
69
Fig. 4-4
Surface morphology of the O2 plasma treated PAN membranes with different plasma power. (a) pristine, (b)10w, (c) 30w, (d) 50w, (e) 70w. (30K magnification).
70
Fig. 4-5
AFM (2-D) images of PAN membrane surface treated by O2plasma with various power for 60sec: (a) pristine PAN, (b) 10w, (c) 30w, (d) 50w, (e) 70w.
71
Fig. 4-6
AFM (3-D) images of PAN membrane surface treated by O2plasma with various power for 60sec: (a) pristine PAN, (b) 10w, (c) 30w, (d) 50w, (e) 70w.
72
Fig. 4-7
Effect of O2 plasma power on permeate concentration of 70wt.% aqueous EG solution through the 0550PDMS composite membrane at 30℃.
73
Fig. 4-8
Effect of O2 plasma power on PSI value for a 70wt.% aqueous EG solution at 30℃ through 0550PDMS
75
composite membrane.
Fig. 4-9
Effect of plasma treatment time on the permeation flux of PDMS/p-PAN composite membranes. (Feed condition: 70wt.% aqueous EG solution at 30℃); Membrane: (■)0505PDMS, (●) 2005PDMS, (▲) 0550PDMS, (▼)2050PDMS.
76
Fig. 4-10
Effect of plasma treatment time on the water concentration in permeate of PDMS/p-PAN composite membranes. (Feed condition: 70wt.% aqueous EG solution at 30℃);Membrane: (■) 0505PDMS, (●) 2005PDMS, (▲)0550PDMS, (▼) 2050PDMS.
77
Fig. 4-11
SEM surface images of the O2 plasma treated PAN membranes by different plasma treated time. Plasma treatedtime with 60sec: (A) 1k, (B) 10k, (C) 20k, (D) 30k; Plasma treated time with 120sec : (a) 1k, (b) 10k, (c) 20k, (d) 30k. (30K magnification) (power: 50w)
78
Fig. 4-12
SEM surface morphology of PDMS/p-PAN membranes. PDMS casting condition : (a) 5wt.%-5μm, (b) 20wt.%-5μm, (c) 5wt.%-50μm, (d) 20wt.%-50μm. (10K magnification)
79
Fig. 4-13
SEM cross-section images of the PDMS/p-PAN composite membranes. (a) pristine PAN, (b) 0505PDMS, (c) 0550PDMS, (d) 2005PDMS, (e) 2050PDMS. (10K magnification).
81
Fig. 4-14
Effect of casting condition on the pervaporation performance of 70wt.% aqueous EG solution through the
82
PDMS/p-PAN composite membrane at 30℃
Fig. 4-15
Effect of feed concentration on the pervaporation performance of 0550PDMS composite membrane at 30℃.
83
Fig. 4-16
Effect of feed concentration on PSI value of 0550PDMS composite membrane at 30℃.
84
Fig. 4-17
Effect of feed temperatures on the pervaporation performance of 70wt.% aqueous EG solution through the 0550PDMS composite membrane.
85
Fig. 4-18
Arrhenius plots of EG and water for separating 70wt.% aqueous EG solution through the0550PDMS composite membrane.
86

表索引
第二章
Table 2-1
Driving forces and the two-phase systems separated by membranes for different membrane processes.
35
第三章
Table 3-1
Designation of PDMS/p-PAN composite membranes.
51
第四章
Table 4-1
Pervaporation performance for PAN membranes and PDMS/p-PAN composite membranes. (Feed: 70wt.% aqueous EG solution at 30℃)
66
Table 4-2
Physical properties of water、ethylene glycol and PDMS.
74
Table 4-3
Activation energy for pervaporation.
87
1.M. Mulder, “Basic principle of membrane technology”, Kluwer Acdermic Publisher, The Netherlands, (1996).

2.S.T. Hwang and K. Kammermeyer,” Membrane in separation”, John Wiley & Sons, Inc., New York (1975)

3.M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, “Dehydration of ethylene glycol by pervaporation using hydrophilic IPNs of PVA, PAA and PAAM membranes”, Sep. Purif. Technol., 13 (1998) 47-56

4.J. Bai, A.E. Fouda, T. Matsuura, J.D. Hazlett, “A study on the preparation and performance of polydimethylsiloxane-coated polyetherimide membranes in pervaporation”, J. Appl. Polym. Sci., 48 (1993) 999-1008

5.M.Y. Teng, K.R. Lee, D.J. Liaw, J.Y. Lai, “Preparation and pervaporation performance of poly(3-alkylthiophene) membrane”, Polymer 41 (2000) 2047-2052

6.003R.W. Baker, “Membrane Technology and application”, McGraw-Hill Book Company, Inc., New Tork (2000)

7.J.Y. Lai, M.J. Liu and K.R. Lee, “Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air”, J. Membr. Sci., 86 (1994) 10-118

8.F.C. Lin, D.M. Wang and J.Y. Lai, “Asymmetric TPX membranes with high gas flux”, J. Membr. Sci., 110 (1996) 25-36

9.李魁然, 賴君義, “滲透蒸發分離程序處理有機廢水(III)”, 石油暨石化科技產業科技學術合作, 計劃編號:89-CPC-7-253-001 (2000)

10.S.P. Nunes, K.V. Peinemann, “Membrane technology in the chemical industry”, Wiley, Germany, (2003).
11.P.M. Bungay, H.K. Lonsdale, M.N. de Ponho, “Synthetic membrane: science, engineering and application”, D Reidel Pub. Co., Holland (1986)

12.R.C. Binning and F.E. James, “Now separate by membrane permeation”, Petroleum Refiner , 37 (1958) 214-215

13.R.C. Binning, J.F. Jennings and E.C. Martin, “Removal of water from organic chemicals”, U.S. Patent, No. 3,035,060 (1962)

14.T. Uragami and K. Takigawa,” Permeation and separation characteristics of ethanol-water mixtures through chitosan derivative membranes by pervaporation and evapomeation”, Polymer, 31 (1990) 668-672

15.S. Mishima, H. Kaneoka, T. Nakagawa,” Characterization and Pervaporation of Chlorinated Hydrocarbon–Water Mixtures with Fluoroalkyl Methacrylate-Grafted PDMS Membrane”, J Appl. Polym. Sci., 71 (1999) 273–287

16.T. Miyata, Y. Nakanishi, and T. Uragami, “Ethanol Permselectivity of Poly(dimethylsiloxane) Membranes Controlled by Simple Surface Modifications Using Polymer Additives”, Macromolecules 30 (1997) 5563-5565

17.L. Sun, G.L. Baker, and M.L. Bruening, “Polymer Brush Membranes for Pervaporation of Organic Solvents from Water ”, Macromolecules 38 (2005) 2307-2314

18.I. Ghosh, S.K. Sanyal, and R.N. Mukherjea, ” Pervaporation of Methanol-Ethylene Glycol with Cellophane Membranes: Performance of Conditioned Membranes”, Ind. Eng. Chem. Res., 28 (1989) 757-763

19.K. Inui, H. Okumura, T. Miyata, T. Uragaml, “Permeation and separation of benzene/cyclohexane mixtures through cross-linked poly(alkyl methacrylate) membranes”, J. Membr. Sci., 132 (1997) 193-202

20.W. Jehle, Th. Staneff, B. Wagner, J. Steinwandel, “Separation of glycol and water from coolant liquids by evaporation, reverse osmosis and pervaporation”, J. Membr. Sci., 102 (1995) 9-19
21.019de V Naylor, T., “ The Synthesis, Characterization, Reactions, and Applications of Polymers“, Comprehensive Polymer Science, Dergman Press, New York, 1989, Chap. 20

22.M.G. Liu, J.M. Dickson, P. Cote, ”Simulation of a pervaporation system of the industrial scale for water treatment Part I: Extended resistance-in-series model ”, J. Membr. Sci., 111 (1996) 227-241

23.E. Shi, W. Huang, Z. Xiao, D. Li, M. Tang, “Influence of Binding Interface between Active and Support Layers in Composite PDMS Membranes on Permeation Performance”, J Appl. Polym. Sci., 104 (2007) 2468–2477

24.M.S. Yen, P.Y. Tsai,” Study on Polyethylene Glycol/ Polydimethylsiloxane Mixing Soft-Segment Waterborne Polyurethane from Different Mixing Processes”, J Appl. Polym. Sci., 90 (2003) 233–243

25.T. Uragami, H. Yamada, T. Miyata, “Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology”, J. Membr. Sci., 187 (2001) 255–269

26.P. Wu, B.J. Brisdon, R. England, R.W. Field, “Preparation of modified difunctional PDMS membranes and a comparative evaluation of their performance for the pervaporative recovery of p-cresol from aqueous solution”, J. Membr. Sci., 206 (2002) 265–275

27.T. Uragami, T. Ohshima, and T. Miyata, “Removal of Benzene from an Aqueous Solution of Dilute Benzene by Various Cross-Linked Poly(dimethylsiloxane) Membranes during Pervaporation”, Macromolecules 36 (2003) 9430-9436

28.T. Ohshima, Y. Kogami, T. Miyata, T. Uragami, “Pervaporation characteristics of cross-linked poly(dimethylsiloxane) membranes for removal of various volatile organic compounds from water”, J. Membr. Sci., 260 (2005) 156–163

29.T. Mohammadi, A. Aroujalian, A. Bakhshi, “Pervaporation of dilute alcoholic mixtures using PDMS membrane”, Chem. Eng. Sci., 60 (2005) 1875 – 1880

30.I.F.J. Vankelecom, B. Moermans, G. Verschueren, P.A. Jacobs, “Intrusion of PDMS top layers in porous supports”, J. Membr. Sci., 158 (1999) 289-297

31.Rongbin Qi, Changwei Zhao, Jiding Li , Yujun Wang, Shenlin Zhu, “Removal of thiophenes from n-octane/thiophene mixtures by pervaporation”, J. Membr. Sci., 269 (2006) 94–100

32.H. Wu, L. Liu, F. Pan, C. Hua, Z. Jiang, “Pervaporative removal of benzene from aqueous solution through supramolecule calixarene filled PDMS composite membranes”, Sep. Purif. Technol., 51 (2006) 352–358

33.H.J. Kim, S.S. Nah, B.R. Min, “A new technique for preparation of PDMS pervaporation membrane for VOC removal”, Adv. Environ. Res., 6 (2002) 255-264

34.高瑟聰,“幾丁聚醣/聚丙烯腈/不織布複合膜之製備及其滲透蒸發效能之評估”, 國立台灣大學化學工程研究所, 碩士論文(2003)

35.N.W. OH, J. JEGAL, K. LEE, “Preparation and Characterization of Nanofiltration Composite Membranes Using Polyacrylonitrile (PAN). I. Preparation and Modification of PAN Supports”, J. Appl. Polym. Sci., 80 (2001) 1854–1862

36.Y. Shi, C.M. Burns, X. Feng, “Poly(dimethyl siloxane) thin film composite membranes for propylene separation from nitrogen”, J. Membr. Sci., 282 (2006) 115–123

37.K. Madhavan, B.S.R. Reddy, “Poly(dimethylsiloxane-urethane) membranes: Effect of hard segment in urethane on gas transport properties”, J. Membr. Sci., 283 (2006) 357–365

38.C.B. Bartels, J. Reale, , “Dehydration of Glycols”, Dehydration of Glycols Texaco Inc., US Patent No.4,802,988 (1989)

39.F.R. Chen. H.F. Chen, “Pervaporation separation of ethylene glycol-water mixtures using crosslinked PVA-PES composite membranes. Part I. Effects of membrane preparation conditions on pervaporation performances”, J. Membr. Sci., 109 (1996) 247-256

40.F.R. Chen, H.E Chen, “A diffusion model of the pervaporation separation of ethylene glycol-water mixtures through crosslinked poly(vinyl alcohol) membrane”, J. Membr. Sci., 139 (1998) 201-209

41.M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, “Dehydration of ethylene glycol by pervaporation using hydrophilic IPNs of PVA, PAA and PAAM membranes”, Sep. Purif. Technol., 13 (1998) 47-56

42.R. Guo, C. Hu, B. Li, Z. Jiang,” Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis”, J. Membr. Sci., 289 (2007) 191–198

43.X. Feng, Robert Y.M. Huang, “Pervaporation with chitosan membranes. I. Separation of water from ethylene glycol by a chitosan/polysulfone composite membrane”, J. Membr. Sci., 116 (1996) 67-76

44.S.Y. Nam, Y.M. Lee, “Pervaporation of ethylene glycol-water mixtures I. Pervaporation performance of surface crosslinked chitosan membranes”, J. Membr. Sci., 153 (1999) 155-162

45.J. Sekulic´, J.E.t. Elshof, and D.H.A. Blank, “Selective Pervaporation of Water through a Nonselective Microporous Titania Membrane by a Dynamically Induced Molecular Sieving Mechanism”, Langmuir 21, (2005) 508-510

46.P. Shao, R.Y.M. Huang, X. Feng, W. Anderson, R. Pal, C.M. Burns, “Composite membranes with an integrated skin layer: preparation, structural characteristics and pervaporation performance”, J. Membr. Sci., 254 (2005) 1–11
47.R.Y.M. Huang, Pinghai Shao, X. Feng, and W.A. Anderson, “Separation of Ethylene Glycol-Water Mixtures Using Sulfonated poly(ether ether ketone) Pervaporation Membranes: Membrane Relaxation and Separation Performance Analysis”, Ind. Eng. Chem. Res., 41 (2002) 2957-2965

48.M. Khayet, J.P.G. Villaluenga, M.P. Godino, J.I. Mengual, B. Seoane, K.C. Khulbe, T. Matsuura, “Preparation and application of dense poly(phenylene oxide) membranes in pervaporation”, J. Colloid Interface Sci., 278 (2004) 410–422

49.I. Ghosh, S.K. Sanyal, and R.N. Mukherjea, “Pervaporation of Methanol-Ethylene Glycol with Cellophane Membrane: Some Mechanistic Aspects”, Ind. Eng. Chem. Res., 27 (1988) 1895-1900

50.S.K. Ray, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, “Methanol selective membranes for separation of methanol-ethylene glycol mixtures by pervaporation”, J. Membr. Sci., 154 (1999) 1-13

51.K. Srinivasan, K. Palanivelu, A.N. Gopalakrishnan, “Recovery of 1-butanol from a model pharmaceutical aqueouswaste by pervaporation”, Chem. Eng. Sci., 62 (2007) 2905 – 2914

52.M. Khayet, G. Chowdhury and T. Matsuura, “Surface Modification of Polyvinylidene Fluoride Pervaporation Membranes”, AIChE J., 48 (2002) 2833-2843

53.J. Huang, M.M. Meagher, “Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes”, J. Membr. Sci., 192 (2001) 231–242

54.T. Uragmi, H. Yamada, and T. Miyata, “Effects of Fluorine-Containing Graft and Block Copolymer Additives on Removal Characteristics of Dilute Benzene in Water by Microphase-Separated Membranes Modified with These Additives”, Macromolecules, 39 (2006) 1890-1897

55.O.G. Nik, A. Moheb, T. Mohammadi, “Separation of Ethylene Glycol/Water Mixtures using NaA Zeolite Membranes”, Chem. Eng. Technol., 29, (2006)1340–1346

56.T. Miyata, H. Yamada, and T. Uragami, “Surface Modification of Microphase-Separated Membranes by Fluorine-Containing Polymer Additive and Removal of Dilute Benzene in Water through These Membranes”, Macromolecules, 34 (2001) 8026-8033

57.T. Ohshima, T. Miyata, T. Uragami, H. Berghmens, “Cross-linked smart poly(dimethylsiloxane) membranes for removal of volatile organic compounds in water”, J. Mol. Struct., 739 (2005) 47–55

58.T. Uragami, T. Doi, T. Miyata, “Control of permselectivity with surface modifications of poly(1-(trimethylsilyl)-1-propyne) membranes”, Int. J. Adhes. Adhes., 19 (1999) 405-409

59.T. Uragami, T. Meotoiwa, and T. Miyata, ” Effects of Morphology of Multicomponent Polymer Membranes Containing Calixarene on Permselective Removal of Benzene from a Dilute Aqueous Solution of Benzene”, Macromolecules, 36 (2003) 2041-2048

60.T. Uragami, T. Meotoiwa, and T. Miyata, “Effects of the Addition of Calixarene to Microphase-Separated Membranes for the Removal of Volatile Organic Compounds from Dilute Aqueous Solutions”, Macromolecules, 34 (2001) 6806-6811

61.T. Miyata, S. Obata, and T. Uragami, “Morphological Effects of Microphase Separation on the Permselectivity for Aqueous Ethanol Solutions of Block and Graft Copolymer Membranes Containing Poly(dimethylsiloxane)”, Macromolecules, 1999, 32, 3712-3720

62.T. Miyata, T. Takagi, and T. Uragami, “Microphase Separation in Graft Copolymer Membranes with Pendant Oligodimethylsiloxanes and Their Permselectivity for Aqueous Ethanol Solutions”, Macromolecules, 29 (1996) 7787-7794

63.J. Comyn, F. de Buyl,” Mobility of water and alcohols in a silica reinforcedsiloxane network”, Euro. Polym. J., l 37 (2001) 2385-2391

64.J. Bai, A.E. Fouda, T. Matsuura, J.D. Hazlett, “A study on the preparation and performance of polydimethylsiloxane-coated polyetherimide membranes in pervaporation”, J. Appl. Polym. Sci., 48 (1993) 999-1008

65.J.H.Kim, B.R. Min, J. Won, H.C. Park and Y.S. Kang, “Phase behavior and mechanism of membrane formation for polyimide/DMSO/water system”, J. Membr. Sci., 187 (2001) 47–55

66.B. Sartowska, M. Buczkowski, W. Starosta, “SEM observations of particle track membrane surfaces modificated using plasma treatment”, Mater. Chem. Phys., 81 (2003) 352–355

67.R.Y.M. Huang, R. Pal, G.Y. Moon, “Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane”, J. Membr. Sci., 167 (2000) 275–289

68.J. G. Wijmans, R. W. Baker, “The solution-diffusion model: a review”, J. Membr. Sci., 107 (1995) 1-21.

69.K.R. Lee, M.J. Liu, J.Y. Lai, “Pervaporation separation of aqueous alcohol solution through asymmetric polycarbonate membrane”, Separ. Sci. Technol., 29(1) (1994) 119-134

70.T. Uragami, T. Morikawa and H. Okuno, “Characteristics of permeation and separation of aqueous alcohol solutions through hydrophobic polymer membranes”, Polymer, 30 (1989) 1117-1122

71.R. Liu, X. Qiao, T.S. Chung, “The development of high performance P84 co-polyimide hollowfibers for pervaporation dehydration of isopropanol”, Chem. Eng. Sci., 60 (2005) 6674-6686

72.R. Guo, C. Hu, B. Li, Z. Jiang, “Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis”, J. Membr. Sci., 289 (2007) 191–198

73.O.G. Nik, A. Moheb, T. Mohammadi, “Separation of Ethylene Glycol/Water Mixtures using NaA Zeolite Membranes”, Chem. Eng. Technol., 29 (2006)1340–1346

74.D. Shah, K. Kissick, A. Ghorpade, R. Hannah, D. Bhattacharyya, “Pervaporation of alcohol–water and dimethylformamide–water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results”, J. Membr. Sci., 179 (2000) 185–205

75.J. Sekulic´, J.E. ten Elshof, and D.H.A. Blank, “Selective Pervaporation of Water through a Nonselective Microporous Titania Membrane by a Dynamically Induced Molecular Sieving Mechanism”, Langmuir, 21( 2005) 508-510

76.R. Guo, C. Hu, B. Li, Z. Jiang, “Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis”, J. Membr. Sci., 289 (2007) 191–198
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top